Project description:MDMA (ecstasy) is an illicit drug that stimulates monoamine neurotransmitter release and inhibits reuptake. MDMAâs acute cardiotoxicity includes tachycardia and arrhythmia which are associated with cardiomyopathy (CM). MDMA acute cardiotoxicity has been explored, but neither long-term MDMA cardiac pathological changes nor epigenetic changes have been evaluated. Microarray analyses were employed to identify cardiac gene expression changes and epigenetic DNA methylation changes. To identify permanent MDMA-induced pathogenetic changes, mice received daily 10d or 35d MDMA , or daily 10d MDMA followed by 25d saline washout (10+25d). MDMA treatment (10d) caused differentially gene expression (p<0.05, fold change >1.5), with 752 genes 558 genes following 35d MDMA, and 113 genes following 10d treatment +25d washout. Changes in MAPK and circadian rhythm gene expression were identified following 10d administration. After 35d, circadian rhythm genes (Per3, CLOCK, ARNTL, and NPAS2) remained differentially expressed. MDMA caused DNA hypermethylation and hypomethylation that was independent of gene expression; hypermethylation of genes was 71% at 10d, 68% at 35d, and 91% at 10+25d. Differential gene expression that corresponded directly with DNA methylation changes occurred in 22% of genes at 10d, 17% at 35d, and 48% at 10d+25d washout. MDMA treatment resulted in epigenetic changes in cardiac DNA methylation. Hypermethylation was the predominant effect. MDMA induced gene expression of key elements of circadian rhythm regulatory genes and suggest a fundamental mechanism for MDMA dysfunction in the heart. This study addresses how MDMA (ecstasy) affects cardiac (left ventricle) gene expression and epigenetic nuclear DNA methylation. Each sample was fluorescently labeled and hybridized to Roche Nimblegen 2.1M Deluxe Promoter Arrays.
Project description:MDMA (ecstasy) is an illicit drug that stimulates monoamine neurotransmitter release and inhibits reuptake. MDMAâs acute cardiotoxicity includes tachycardia and arrhythmia which are associated with cardiomyopathy (CM). MDMA acute cardiotoxicity has been explored, but neither long-term MDMA cardiac pathological changes nor epigenetic changes have been evaluated. Microarray analyses were employed to identify cardiac gene expression changes and epigenetic DNA methylation changes. To identify permanent MDMA-induced pathogenetic changes, mice received daily 10d or 35d MDMA , or daily 10d MDMA followed by 25d saline washout (10+25d). MDMA treatment (10d) caused differentially gene expression (p<0.05, fold change >1.5), with 752 genes 558 genes following 35d MDMA, and 113 genes following 10d treatment +25d washout. Changes in MAPK and circadian rhythm gene expression were identified following 10d administration. After 35d, circadian rhythm genes (Per3, CLOCK, ARNTL, and NPAS2) remained differentially expressed. MDMA caused DNA hypermethylation and hypomethylation that was independent of gene expression; hypermethylation of genes was 71% at 10d, 68% at 35d, and 91% at 10+25d. Differential gene expression that corresponded directly with DNA methylation changes occurred in 22% of genes at 10d, 17% at 35d, and 48% at 10d+25d washout. MDMA treatment resulted in epigenetic changes in cardiac DNA methylation. Hypermethylation was the predominant effect. MDMA induced gene expression of key elements of circadian rhythm regulatory genes and suggest a fundamental mechanism for MDMA dysfunction in the heart. This study addresses how MDMA (ecstasy) affects cardiac (left ventricle) gene expression and epigenetic nuclear DNA methylation. Each sample was fluorescently labeled and hybridized to Roche Nimblegen 12X135kb MM9 Gene Expression Arrays.
Project description:MDMA (ecstasy) is an illicit drug that stimulates monoamine neurotransmitter release and inhibits reuptake. MDMA’s acute cardiotoxicity includes tachycardia and arrhythmia which are associated with cardiomyopathy (CM). MDMA acute cardiotoxicity has been explored, but neither long-term MDMA cardiac pathological changes nor epigenetic changes have been evaluated. Microarray analyses were employed to identify cardiac gene expression changes and epigenetic DNA methylation changes. To identify permanent MDMA-induced pathogenetic changes, mice received daily 10d or 35d MDMA , or daily 10d MDMA followed by 25d saline washout (10+25d). MDMA treatment (10d) caused differentially gene expression (p<0.05, fold change >1.5), with 752 genes 558 genes following 35d MDMA, and 113 genes following 10d treatment +25d washout. Changes in MAPK and circadian rhythm gene expression were identified following 10d administration. After 35d, circadian rhythm genes (Per3, CLOCK, ARNTL, and NPAS2) remained differentially expressed. MDMA caused DNA hypermethylation and hypomethylation that was independent of gene expression; hypermethylation of genes was 71% at 10d, 68% at 35d, and 91% at 10+25d. Differential gene expression that corresponded directly with DNA methylation changes occurred in 22% of genes at 10d, 17% at 35d, and 48% at 10d+25d washout. MDMA treatment resulted in epigenetic changes in cardiac DNA methylation. Hypermethylation was the predominant effect. MDMA induced gene expression of key elements of circadian rhythm regulatory genes and suggest a fundamental mechanism for MDMA dysfunction in the heart. This study addresses how MDMA (ecstasy) affects cardiac (left ventricle) gene expression and epigenetic nuclear DNA methylation.
Project description:MDMA (ecstasy) is an illicit drug that stimulates monoamine neurotransmitter release and inhibits reuptake. MDMA’s acute cardiotoxicity includes tachycardia and arrhythmia which are associated with cardiomyopathy (CM). MDMA acute cardiotoxicity has been explored, but neither long-term MDMA cardiac pathological changes nor epigenetic changes have been evaluated. Microarray analyses were employed to identify cardiac gene expression changes and epigenetic DNA methylation changes. To identify permanent MDMA-induced pathogenetic changes, mice received daily 10d or 35d MDMA , or daily 10d MDMA followed by 25d saline washout (10+25d). MDMA treatment (10d) caused differentially gene expression (p<0.05, fold change >1.5), with 752 genes 558 genes following 35d MDMA, and 113 genes following 10d treatment +25d washout. Changes in MAPK and circadian rhythm gene expression were identified following 10d administration. After 35d, circadian rhythm genes (Per3, CLOCK, ARNTL, and NPAS2) remained differentially expressed. MDMA caused DNA hypermethylation and hypomethylation that was independent of gene expression; hypermethylation of genes was 71% at 10d, 68% at 35d, and 91% at 10+25d. Differential gene expression that corresponded directly with DNA methylation changes occurred in 22% of genes at 10d, 17% at 35d, and 48% at 10d+25d washout. MDMA treatment resulted in epigenetic changes in cardiac DNA methylation. Hypermethylation was the predominant effect. MDMA induced gene expression of key elements of circadian rhythm regulatory genes and suggest a fundamental mechanism for MDMA dysfunction in the heart. This study addresses how MDMA (ecstasy) affects cardiac (left ventricle) gene expression and epigenetic nuclear DNA methylation.
Project description:ECSTASY (MDMA) ALTERS CARDIAC GENE EXPRESSION AND DNA METHYLATION: IMPLICATIONS FOR CIRCADIAN RHYTHM DYSFUNCTION IN THE HEART (methylation)
Project description:ECSTASY (MDMA) ALTERS CARDIAC GENE EXPRESSION AND DNA METHYLATION: IMPLICATIONS FOR CIRCADIAN RHYTHM DYSFUNCTION IN THE HEART (expression)
Project description:Cardiomyopathy (CM) is an intrinsic weakening of the myocardium with contractile dysfunction and congestive heart failure (CHF). CHF has been postulated to result from decreased mitochondrial energy production and oxidative stress. The effects of decreased mitochondrial oxygen consumption can also accelerate with aging, with the mitochondrial theory of aging forming the basis of this knowledge. We previously showed DNA methylation changes in human hearts with CM. This was associated with mitochondrial DNA depletion, being another molecular marker of CM. We examined the relationship between mitochondrial dysfunction and cardiac epigenetic DNA methylation changes in both young and old mice. We used genetically engineered C57Bl/6 mice transgenic for a cardiac-specific mutant of the mitochondrial polymerase (termed Y955C). Y955C mice undergo left ventricular hypertrophy (LVH) at a young age (~94 days old), and LVH decompensated to CHF at old age (~255 days old). In Y955C hearts, 95 differentially expressed genes were found, while 4,452 genes were differentially expressed in aged hearts. Moreover, cardiac DNA methylation patterns differed between Y955C (4,506 peaks with 68.5% hypomethylation) and aged hearts (73,286 peaks with 80.2% hypomethylated). Correlatively, of the 95 Y955C-dependent differentially expressed genes, 30 genes (31.6%) also displayed differential DNA methylation; in the 4,452 age dependent differentially expressed genes, 342 gene (7.7%) displayed associated DNA methylation changes. Both Y955C and aging demonstrated significant enrichment of CACGTG-associated E-box motifs in differentially methylated regions. Cardiac mitochondrial polymerase dysfunction alters nuclear DNA methylation. Furthermore, aging causes a robust change in cardiac DNA methylation that is partially associated with mitochondrial polymerase dysfunction. This study addresses how Y955C-mutated mitochondrial DNA polymerase g and aging affect cardiac (left ventricle) gene expression and epigenetic nuclear DNA methylation.
Project description:Cardiomyopathy (CM) is an intrinsic weakening of the myocardium with contractile dysfunction and congestive heart failure (CHF). CHF has been postulated to result from decreased mitochondrial energy production and oxidative stress. The effects of decreased mitochondrial oxygen consumption can also accelerate with aging, with the mitochondrial theory of aging forming the basis of this knowledge. We previously showed DNA methylation changes in human hearts with CM. This was associated with mitochondrial DNA depletion, being another molecular marker of CM. We examined the relationship between mitochondrial dysfunction and cardiac epigenetic DNA methylation changes in both young and old mice. We used genetically engineered C57Bl/6 mice transgenic for a cardiac-specific mutant of the mitochondrial polymerase (termed Y955C). Y955C mice undergo left ventricular hypertrophy (LVH) at a young age (~94 days old), and LVH decompensated to CHF at old age (~255 days old). In Y955C hearts, 95 differentially expressed genes were found, while 4,452 genes were differentially expressed in aged hearts. Moreover, cardiac DNA methylation patterns differed between Y955C (4,506 peaks with 68.5% hypomethylation) and aged hearts (73,286 peaks with 80.2% hypomethylated). Correlatively, of the 95 Y955C-dependent differentially expressed genes, 30 genes (31.6%) also displayed differential DNA methylation; in the 4,452 age dependent differentially expressed genes, 342 gene (7.7%) displayed associated DNA methylation changes. Both Y955C and aging demonstrated significant enrichment of CACGTG-associated E-box motifs in differentially methylated regions. Cardiac mitochondrial polymerase dysfunction alters nuclear DNA methylation. Furthermore, aging causes a robust change in cardiac DNA methylation that is partially associated with mitochondrial polymerase dysfunction. This study addresses how Y955C-mutated mitochondrial DNA polymerase g and aging affect cardiac (left ventricle) gene expression and epigenetic nuclear DNA methylation.
Project description:Cardiac injury following myocardial infarction exhibits a circadian pattern, yet the underlying mechanism remains unclear. To elucidate genes governing circadian variation of myocardial injury, we conducted transcriptomic profiling of left-ventricular tissues from mice or humans experiencing myocardial injury at different daytimes. Through comprehensive analyses, including transgenic mouse models and functional studies, we identified BMAL1 as a pivotal transcription factor modulating diurnal variation of myocardial injury. Remarkably, we discovered that BMAL1 regulates circadian-dependent cardiac injury by forming a transcriptionally active heterodimer with HIF2A. Substantiating this finding, we determined the cryo-EM structure of the BMAL1/HIF2F/DNA complex, revealing a previously unknown capacity for structural rearrangement within BMAL1. Furthermore, we confirmed amphiregulin (AREG) as a transcriptional target of the BMAL1/HIF2A heterodimer, critical for modulating circadian variation of myocardial injury. Finally, targeting the BMAL1/HIF2A-AREG pathway via timed AREG administration or enhancing circadian rhythm pharmacologically offered significant cardioprotection, implicating this pathway in treating ischemic heart disease.