Project description:The Virochip microarray (version 5.0, Viro5AGL-60K platform) was used to verify the presence or absence of Chikungunya virus in RNA extracts from asymptomatic blood donors located in Puerto Rico.
Project description:ObjectiveThe chikungunya virus (CHIKV) is an arthropod-borne Alphavirus transmitted to humans, primarily via Aedes mosquitoes. In Puerto Rico, the first locally transmitted infections were reported in May 2014. Although the virus strain in Puerto Rico is related to the Asian/American lineage, many autochthonous cases have emerged recently in the Caribbean region (including Puerto Rico), raising the question of how CHIKV will evolve and adapt in PR. Taking the role of the envelope glycoprotein (E1) in viral evolution and transmission as a given, we analyzed the genetic diversity of the Puerto Rican (PR) E1 gene sequences and the phylogenetic relationships between those sequences and sequences from other parts of the world.Materials and methodsTo analyze the overall genetic variation, 772 nucleotide sequences of the E1 gene were obtained from the Virus Pathogen Resource (ViPR). A maximum-likelihood analysis was performed to determine the phylogenetic relationships between the PR sequences and sequences from 48 countries around the world.ResultsThe analysis of the E1 gene identified variations at 4 nucleotide positions, which included synonymous and nonsynonymous mutations. In addition, 2 nonsynonymous amino acid changes, T207M and S120L, were unique to the PR CHIKV sequences, and T155I was found to be shared by the PR (n = 3) and Colombia (n = 1) strains.ConclusionOur analysis of the E1 gene revealed new molecular signatures in PR CHIKV sequences, 1 of which was also found in Colombia. While studies have shown possible relationships between T98A and A226V with viral adaptation and spread, no other PR sequence contained these vector-adaptive mutations. Thus, constant monitoring of the virus remains an essential factor in the establishment of control strategies to track viral spread.
Project description:Here, we report the complete genome sequences of 15 chikungunya virus strains isolated from human plasma from infected patients in Puerto Rico. The results show that currently circulating chikungunya strains in Puerto Rico are closely related.
Project description:A newly developed transcription-mediated amplification assay was used to detect chikungunya virus infection in 3 of 557 asymptomatic donors (0.54%) from Puerto Rico during the 2014-2015 Caribbean epidemic. Viral detection was confirmed by using PCR, microarray, and next-generation sequencing. Molecular clock analysis dated the emergence of the Puerto Rico strains to early 2013.