Project description:A mutualistic relationship between reef-building corals and endosymbiotic algae (Symbiodinium spp.) forms the basis for the existence of coral reefs. Genotyping tools for Symbiodinium spp. have added a new level of complexity to studies concerning cnidarian growth, nutrient acquisition, and stress. For example, the response of the coral holobiont to thermal stress is connected to the host-Symbiodinium genotypic combination, as different partnerships can have different bleaching susceptibilities. If, and to what extent, differences in algal symbiont clade contents can exert effects on the coral host transcriptome is currently unknown. In this study, we monitored algal physiological parameters and profiled the coral host transcriptional responses in acclimated, thermally stressed, and recovered coral fragments using a custom cDNA gene expression microarray. Combining these analyses with results from algal and host genotyping revealed a striking symbiont effect on both the acclimated coral host transcriptome and the magnitude of the thermal stress response. This is the first study that links coral host transcriptomic patterns to the clade content of their algal symbiont community. Our data provide a critical step to elucidating the molecular basis of the apparent variability seen among different coral-algal partnerships.
Project description:The emergence of genomic tools for reef-building corals and symbiotic anemones comes at a time when alarming losses in coral cover are being observed worldwide. These tools hold great promise in elucidating novel and unforeseen cellular processes underlying the successful mutualism between corals and their algal endosymbionts (Symbiodinium spp.). Since thermal stress triggers a breakdown in the symbiosis (coral bleaching), measuring the transcriptomic response to thermal stress-induced bleaching offers an extraordinary view of the cellular processes specific to coral-algal symbioses. In the present study, we utilized a cDNA microarray containing 2,059 genes of the Caribbean Elkhorn coral Acropora palmata to identify genes differentially expressed upon thermal stress. Fragments from four separate colonies were exposed to elevated temperature (3˚C increase) for two days, and samples were frozen for microarray analysis after 24 and 48 hours. Fragments experienced a 60% reduction in algal cell density after two days. 204 genes were differentially expressed in samples collected one day after thermal stress; in samples collected after two days, 104 genes. Annotations of the differentially expressed genes indicate a conserved cellular stress response in A. palmata involving: 1) growth arrest; 2) chaperone activity; 3) nucleic acid stabilization and repair; and 4) the removal of damaged macromolecules. Other differentially expressed processes include sensory perception, metabolite transfer between host and symbiont, nitric oxide signaling, and modifications to the actin cytoskeleton and extracellular matrix. The results are also compared to those from a previous coral microarray study of thermal stress in Montastraea faveolata.
Project description:Coral reefs are declining globally. Temperature anomalies disrupt coral-algal symbioses at the molecular level, causing bleaching and mortality events. In terrestrial mutualisms, diversity in pairings of host and symbiont individuals (genotypes) results in ecologically and evolutionarily relevant stress response differences. The extent to which such intraspecific diversity provides functional variation in coral-algal systems is unknown. Here we assessed functional diversity among unique pairings of coral and algal individuals (holobionts). We targeted six genetically distinct Acropora palmata coral colonies that all associated with a single, clonal Symbiodinium ‘fitti’ strain in a natural common garden. No other species of algae or other strains of S. ‘fitti’ could be detected in host tissues. When colony branches were experimentally exposed to cold stress, host genotype influenced the photochemical efficiency of the symbiont strain, buffering the stress response to varying degrees. Gene expression differences among host individuals with buffered vs. non-buffered symbiont responses included biochemical pathways that mediate iron availability and oxygen stress signaling—critical components of molecular interactions with photosynthetic symbionts. Spawning patterns among hosts reflected symbiont performance differences under stress. These data are some of the first to indicate that genetic interactions below the species level affect coral holobiont performance. Intraspecific diversity serves as an important but overlooked source of physiological variation in this system, contributing raw material available to natural selection. Note: in the final publication, only ambient and cold treatments are discussed, but there was an additional hot treatment for each genotype at 34C. Most colonies expired after 6 hours, so PAM data could not be collected. The microarray data from 3.5 hours are included here.
Project description:Naval training exercises involving live ordnance can introduce munitions constituents (MCs) such as 1,3,5-trinitro-1,3,5 triazine (RDX) into the marine environment posing a potential environmental hazard to reef organisms, including corals. We developed a bioinformatic infrastructure and high-density microarray for a coral consortium and assessed the effects of RDX bioaccumulation on gene expression related to coral and endosymbiont health in the reef building coral (Acropora formosa). High-throughput sequencing and assembly of the transcriptomes for A. formosa and all eukaryotic endosymbionts yielded 189,616 unique sequences and 25,003 significant functional matches to protein-coding genes. Functional annotation and metabolic pathway associations were also developed. The bioinformatics base was transitioned to custom 15,000 probe microarrays that were used to assess RDX effects on gene expression in the A. formosa coral consortium. Coral fragments were exposed to RDX (0.5, 1, 2, 4, and 8 mg/L) for 5d in a controlled laboratory experiment. RDX readily accumulated into coral tissues; however, bioconcentration was minimal (bioconcentration factor = 1.09-1.50). RDX caused no significant changes in zooxanthellae tissue densities, however a significant (p<0.05) 40% increase in mucocytes was observed in the 8 mg/L exposure indicating a mucosal protective response to RDX exposure. Investigation of T-RFLP profiles indicated significant differences in bacterial community composition inhabiting the coral surface microlayer of Acropora sp. between control and RDX-exposed coral as among exposure concentrations. Differential expression of transcripts increased with increasing RDX concentration where 126, 195 and 272 transcripts were differentially expressed in the 0.5, 2.0 and 8 mg/L RDX treatments, respectively. The commonality in differentially expressed transcripts (DET) among exposure concentrations ranged from 9.9 to 29.0% where the lowest commonality was observed between the most disparate RDX exposure concentrations. Increasing RDX concentrations caused an increasing proportion of the number of transcripts differentially expressed in symbionts relative to corals. Further, a trend toward decreased transcript expression in symbionts in response to increasing RDX concentration was observed where 20.0% of differentially expressed transcripts had decreased expression at the 0.5 mg/L concentration, whereas 80.4% had decreased expression at the 8 mg/L concentration. Investigation of KEGG orthology for DET indicated potential impacts of RDX on a variety of molecular pathways, predominantly in endosymbionts compared to the coral host. Prominent effects of RDX exposure on pathways included enrichment of DET involved in carbohydrate metabolism, amino acid metabolism, energy metabolism, lipid metabolism, metabolism of cofactors and vitamins, environmental information processing and cellular processes. Fragments of the living branched coral Acropora formosa were obtained from Oceans, Reefs and Aquaria (http://www.orafarm.com). Ten gallon aquaria were used to expose 5 coral fragments to control or RDX exposure conditions (0.49, 0.93, 1.77, 3.67 and 7.18 mg/L, measured concentrations). The microarray hybridization experiment included 3 biological replicates for the 0.5, 2, and 8 mg/L RDX conditions and 4 biological replicates for the control.
Project description:The endosymbiotic interaction established by cnidarians and photosynthetic dinoflagellate algae is the foundation of coral reef ecosystems. This essential interaction is globally threatened to breakdown by anthropogenic disturbance. As such, it is compelling to understand the molecular mechanisms underpinning the cnidarian-algal association. We investigated phosphorylation-mediated protein signaling as a mechanism of regulation of the cnidarian-algal interaction, and we report on the generation of the first phosphoproteome for the coral model system Aiptasia. Using mass spectrometry-based phosphoproteomics in data-independent acquisition (DIA) allowed consistent quantification of over 3,000 phosphopeptides totaling more than 1,600 phosphoproteins across aposymbiotic (symbiont-free) and symbiotic anemones. Additionally, to allow for discrimination between translational regulation and post-translational phosphorylation, we generated a total proteome dataset from the same anemones and used it for phosphopeptide normalization against protein amount. While quantification of protein phosphorylation relied upon the generation of a spectrum library generated by data-dependent acquisition (DDA), total protein quantification in DIA was conducted "library-free" (directDIA) in SpectronautX. DirectDIA allowed consistent quantification of 20,215 peptides, totaling 4,121 proteins (3,518 protein groups) across biological samples.
Project description:Coral reefs are based on the symbiotic relationship between corals and photosynthetic dinoflagellates of the genus Symbiodinium. We followed gene expression of coral larvae of Acropora palmata and Montastraea faveolata after exposure to Symbiodinium strains that differed in their ability to establish symbioses. We show that the coral host transcriptome remains almost unchanged during infection by competent symbionts, but is massively altered by symbionts that fail to establish symbioses. Our data suggest that successful coral-algal symbioses depend mainly on the symbionts' ability to enter the host in a stealth manner rather than a more active response from the coral host.
Project description:Since the discovery of Chromera velia as a novel coral-associated microalga, this organism has attracted interest because of its unique evolutionary position between the photosynthetic dinoflagellates and the parasitic apicomplexans. The nature of the relationship between Chromera and its coral host is controversial. Is it a mutualism, from which both participants benefit, or is Chromera a parasite, harming its host? To better understand the interaction, larvae of the common Indo-Pacific reef-building coral Acropora digitifera were experimentally infected with Chromera and the impact on the host transcriptome assessed at 4, 12, and 48 h post-infection using Illumina RNA-Seq technology. The transcriptomic response of the coral to Chromera was complex and implies that host immunity is strongly suppressed, and both phagosome maturation and the apoptotic machinery modified. These responses differ markedly from those described for infection with a competent strain of the coral symbiont Symbiodinium, instead resembling those of vertebrate hosts to parasites and/or pathogens such as Mycobacterium tuberculosis. Consistent with ecological studies suggesting that the association may be accidental, the transcriptional response of A. digitifera larvae leads us to conclude that Chromera is more likely to be a coral parasite, commensal, or accidental bystander, but certainly not a beneficial mutualist