Project description:The current study aimed to address the hypothesis that programmed expression of key miRNAs in skeletal muscle mediates the development of insulin resistance, and consequently long-term health. We thus examined microRNA signatures in skeletal muscle of unmedicated newly diagnosed human pre-diabetics and type 2 diabetics. Skeletal muscle biopsies were obtained from the vastus lateralis from males with pre-diabetes (PD, n=5) or type 2 diabetes mellitus (T2DM, n=6) along with age and sex-matched healthy volunteers (H, n=5). Ramaciotti Centre for Genomics (UNSW, sydney, Australia)
Project description:Analysis of ex vivo isolated lymphatic endothelial cells from the dermis of patients to define type 2 diabetes-induced changes. Results preveal aberrant dermal lymphangiogenesis and provide insight into its role in the pathogenesis of persistent skin inflammation in type 2 diabetes. The ex vivo dLEC transcriptome reveals a dramatic influence of the T2D environment on multiple molecular and cellular processes, mirroring the phenotypic changes seen in T2D affected skin. The positively and negatively correlated dLEC transcripts directly cohere to prolonged inflammatory periods and reduced infectious resistance of patients´ skin. Further, lymphatic vessels might be involved in tissue remodeling processes during T2D induced skin alterations associated with impaired wound healing and altered dermal architecture. Hence, dermal lymphatic vessels might be directly associated with T2D disease promotion.
Project description:Analysis of ex vivo isolated lymphatic endothelial cells from the dermis of patients to define type 2 diabetes-induced changes. Results preveal aberrant dermal lymphangiogenesis and provide insight into its role in the pathogenesis of persistent skin inflammation in type 2 diabetes. The ex vivo dLEC transcriptome reveals a dramatic influence of the T2D environment on multiple molecular and cellular processes, mirroring the phenotypic changes seen in T2D affected skin. The positively and negatively correlated dLEC transcripts directly cohere to prolonged inflammatory periods and reduced infectious resistance of patients´ skin. Further, lymphatic vessels might be involved in tissue remodeling processes during T2D induced skin alterations associated with impaired wound healing and altered dermal architecture. Hence, dermal lymphatic vessels might be directly associated with T2D disease promotion. Global gene expression profile of normal dermal lymphatic endothelial cells (ndLECs) compared to dermal lymphatic endothelial cells derived from type 2 diabetic patients (dLECs).Quadruplicate biological samples were analyzed from human lymphatic endothelial cells (4 x diabetic; 4 x non-diabetic). subsets: 1 disease state set (dLECs), 1 control set (ndLECs)
Project description:The nucleosome signature reflects the cellular epigenetic memory and contributes to the cellular phenotype and function. Obesity and type 2 diabetes pathogenesis is largely dependent on environmentally-induced epigenetic modifications and is marked by skeletal muscle insulin resistance; however, no in vivo skeletal muscle nucleosome maps exist to date. Herein, whole genome nucleosome maps via MNase-seq in skeletal muscle of mice on a low fat, high fat or high fat diet with the chromatin modifier sodium butyrate show that complex interactions among mitochondrial function, the tissue microenvironment, cellular phenotype and nucleosome landscape determine whole body phenotype and insulin resistance. Skeletal muscle samples (n=5 per group) were pooled after homogenization under liquid nitrogen with a motar and pestle to give one sample per group for MNase-seq