Project description:To investigate the role of this enzyme in different plant tissues, we characterized a mutant from Arabidopsis thaliana having an insertion at the GAPC gene locus. The homozygous mutant was determined to be null respect to GAPC, as it exhibited complete absence of both expression of GAPC mRNA and enzyme activity. Transcriptome analysis demonstrated that the insertion mutant plant shows altered expression of several enzymes involved in carbohydrate metabolism. Keywords: 2 channel experiment in triplicate including a dye swap comparison
Project description:Expression analysis was performed with two TDNA insertion mutants of taf4b i.e; taf4bprm (TDNA insertion in promoter region) and taf4bint (TDNA insertion in intronic region), Taf4b overexpression lines, taf4bprmcpr5 double mutant lines (Double mutant was generated by crossing taf4bprm with cpr5) and Col-0 in normal condition as well as with taf4bprm mutant and Col-0 infected with fungi AB (Alternaria brassicicola) and bacteria ES4 (Pseudomonas syringae pv.maculicola ES4326 ) in different perspectives. Affymatrix expression analysis was executed to provide mechanistic details of regulation of genes by Taf4b in plants.
Project description:The Arabidopsis T-DNA insertion mutant of Di19-3 (SALK_072390) showed involvement in various physiological responses like photomorphogenesis, lateral rootgrowth and development. We identified that Di19 is also involved in auxin and ethylene mediated responses. Therefore, to identify the downstream pathways affected in the Di19 mutant, we performed transcriptome profiling of mutant vs wild type using Affymetrix microarray platform.
Project description:deOliveiraDalMolin2010 - Genome-scale
metabolic network of Arabidopsis thaliana (AraGEM)
This model is described in the article:
AraGEM, a genome-scale
reconstruction of the primary metabolic network in
Arabidopsis.
de Oliveira Dal'Molin CG, Quek LE,
Palfreyman RW, Brumbley SM, Nielsen LK.
Plant Physiol. 2010 Feb; 152(2):
579-589
Abstract:
Genome-scale metabolic network models have been successfully
used to describe metabolism in a variety of microbial organisms
as well as specific mammalian cell types and organelles. This
systems-based framework enables the exploration of global
phenotypic effects of gene knockouts, gene insertion, and
up-regulation of gene expression. We have developed a
genome-scale metabolic network model (AraGEM) covering primary
metabolism for a compartmentalized plant cell based on the
Arabidopsis (Arabidopsis thaliana) genome. AraGEM is a
comprehensive literature-based, genome-scale metabolic
reconstruction that accounts for the functions of 1,419 unique
open reading frames, 1,748 metabolites, 5,253 gene-enzyme
reaction-association entries, and 1,567 unique reactions
compartmentalized into the cytoplasm, mitochondrion, plastid,
peroxisome, and vacuole. The curation process identified 75
essential reactions with respective enzyme associations not
assigned to any particular gene in the Kyoto Encyclopedia of
Genes and Genomes or AraCyc. With the addition of these
reactions, AraGEM describes a functional primary metabolism of
Arabidopsis. The reconstructed network was transformed into an
in silico metabolic flux model of plant metabolism and
validated through the simulation of plant metabolic functions
inferred from the literature. Using efficient resource
utilization as the optimality criterion, AraGEM predicted the
classical photorespiratory cycle as well as known key
differences between redox metabolism in photosynthetic and
nonphotosynthetic plant cells. AraGEM is a viable framework for
in silico functional analysis and can be used to derive new,
nontrivial hypotheses for exploring plant metabolism.
This model is hosted on
BioModels Database
and identified by:
MODEL1507180028.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:To understand the contribution of the RPL24B protein, a component of the large 60S ribosomal subunit, to the translation of specific mRNAs, we compared the ribosome occupancy of mRNAs in wild type Arabidopsis and the rpl24b/stv1-1 T-DNA insertion mutant. RNA was fractionated using sucrose gradients into polysomal and nonpolysomal RNAs. We also determined overall total transcript levels. We used Affymetrix ATH1 microarrays.