Project description:MicroRNAs (miRNAs) are endogenous, noncoding, short RNAs directly involved in regulating gene expression at the post-transcriptional level. In spite of immense importance, limited information of P. vulgaris miRNAs and their expression patterns prompted us to identify new miRNAs in P. vulgaris by computational methods. Besides conventional approaches, we have used the simple sequence repeat (SSR) signatures as one of the prediction parameter. Moreover, for all other parameters including normalized Shannon entropy, normalized base pairing index and normalized base-pair distance, instead of taking a fixed cut-off value, we have used 99% probability range derived from the available data. We have identified 208 mature miRNAs in P. vulgaris belonging to 118 families, of which 201 are novel. 97 of the predicted miRNAs in P. vulgaris were validated with the sequencing data obtained from the small RNA sequencing of P. vulgaris. Randomly selected predicted miRNAs were also validated using qRT-PCR. A total of 1305 target sequences were identified for 130 predicted miRNAs. Using 80% sequence identity cut-off, proteins coded by 563 targets were identified. The computational method developed in this study was also validated by predicting 229 miRNAs of A. thaliana and 462 miRNAs of G. max, of which 213 for A. thaliana and 397 for G. max are existing in miRBase 20. There is no universal SSR that is conserved among all precursors of Viridiplantae, but conserved SSR exists within a miRNA family and is used as a signature in our prediction method. Prediction of known miRNAs of A. thaliana and G. max validates the accuracy of our method. Our findings will contribute to the present knowledge of miRNAs and their targets in P. vulgaris. This computational method can be applied to any species of Viridiplantae for the successful prediction of miRNAs and their targets. Small RNA sequencing was done for 10 days old seedlings of Phaseolus vulgaris Cv. Anupam
Project description:MicroRNAs (miRNAs) are endogenous, noncoding, short RNAs directly involved in regulating gene expression at the post-transcriptional level. In spite of immense importance, limited information of P. vulgaris miRNAs and their expression patterns prompted us to identify new miRNAs in P. vulgaris by computational methods. Besides conventional approaches, we have used the simple sequence repeat (SSR) signatures as one of the prediction parameter. Moreover, for all other parameters including normalized Shannon entropy, normalized base pairing index and normalized base-pair distance, instead of taking a fixed cut-off value, we have used 99% probability range derived from the available data. We have identified 208 mature miRNAs in P. vulgaris belonging to 118 families, of which 201 are novel. 97 of the predicted miRNAs in P. vulgaris were validated with the sequencing data obtained from the small RNA sequencing of P. vulgaris. Randomly selected predicted miRNAs were also validated using qRT-PCR. A total of 1305 target sequences were identified for 130 predicted miRNAs. Using 80% sequence identity cut-off, proteins coded by 563 targets were identified. The computational method developed in this study was also validated by predicting 229 miRNAs of A. thaliana and 462 miRNAs of G. max, of which 213 for A. thaliana and 397 for G. max are existing in miRBase 20. There is no universal SSR that is conserved among all precursors of Viridiplantae, but conserved SSR exists within a miRNA family and is used as a signature in our prediction method. Prediction of known miRNAs of A. thaliana and G. max validates the accuracy of our method. Our findings will contribute to the present knowledge of miRNAs and their targets in P. vulgaris. This computational method can be applied to any species of Viridiplantae for the successful prediction of miRNAs and their targets.
Project description:The goal of this study was to detemine the genes responsible of the pod indehiscence in Phaseolus vulgaris by comparing 4 accesions with total, middle and null dehiscence transcriptomes of three stages of pod develoment of Phaseolus vulgaris
Project description:A Phaseolus vulgaris genome-wide analysis led to identify the small RNAs (sRNA) of this agronomical important legume. It revealed newly identified P. vulgaris-specific microRNAs (miRNAs) that could be involved in the regulation of the rhizobia-symbiotic process. Generally, novel miRNAs are difficult to identify and study because they are very lowly expressed in a tissue- or cell-specific manner. We aimed to analyze sRNAs from common bean root hairs (RH), a single-cell model, induced with pure Rhizobium etli-Nod factors (NF), a unique type of signal molecule. The sequence analysis of samples from NF-induced and control libraries led to identify 132 mature miRNAs, including 63 novel miRNAs and 1984 phasiRNAs. From these, six miRNAs were significantly differentially expressed during NF-induction, including one novel miRNA: miR-RH82. A parallel degradome analysis of the same samples revealed 29 targets potentially cleaved by novel miRNAs specifically in NF-induced RH samples, however these novel miRNAs were not differentially accumulated in this tissue. This study reveals Phaseolus vulgaris-specific novel miRNA candidates and their corresponding targets that meet all criteria to be involved in the regulation of the early nodulation events.
Project description:Background: MiRNAs and phasiRNAs are negative regulators of gene expression. These small RNAs have been extensively studied in plant model species but only 10 mature microRNAs are present in miRBase version 21 and no phasiRNAs have been identified for the legume model Phaseolus vulgaris. Thanks to the recent availability of the first version of the common bean genome, degradome data and small RNA libraries, we are able to present here a catalog of the microRNAs and phasiRNAs of this organism and, particularly, new protagonists of the symbiotic nodulation events. Results: We identified a set of 185 mature miRNAs, including 121 previously unpublished sequences, encoded by 307 precursors and distributed in 98 families. Degradome data allowed us to identify a total of 181 targets for these miRNAs. We reveal two regulatory networks involving conserved miRNAs, known to play crucial roles in the well-establishment of nodules, and novel miRNAs specific of the common bean suggesting a specific action of these sequences. In parallel, we identified 125 loci that potentially produce phased small RNAs and 47 of them present all the characteristics to be triggered by a total of 31 miRNAs, including 14 new miRNAs identified in this study. Conclusions: We provide here a set of new small RNAs, which contribute to the broader scene of the sRNAome of Phaseolus vulgaris. Thanks to the identification of the miRNA targets from degradome analysis and the construction of regulatory networks between the mature microRNAs, we draw up here the probable functional regulation associated with the sRNAome and particularly in N2-fixing symbiotic nodules. Degradome sequencing from Phaseolus vulgaris seedling
Project description:Background: MiRNAs and phasiRNAs are negative regulators of gene expression. These small RNAs have been extensively studied in plant model species but only 10 mature microRNAs are present in miRBase version 21 and no phasiRNAs have been identified for the legume model Phaseolus vulgaris. Thanks to the recent availability of the first version of the common bean genome, degradome data and small RNA libraries, we are able to present here a catalog of the microRNAs and phasiRNAs of this organism and, particularly, new protagonists of the symbiotic nodulation events. Results: We identified a set of 185 mature miRNAs, including 121 previously unpublished sequences, encoded by 307 precursors and distributed in 98 families. Degradome data allowed us to identify a total of 181 targets for these miRNAs. We reveal two regulatory networks involving conserved miRNAs, known to play crucial roles in the well-establishment of nodules, and novel miRNAs specific of the common bean suggesting a specific action of these sequences. In parallel, we identified 125 loci that potentially produce phased small RNAs and 47 of them present all the characteristics to be triggered by a total of 31 miRNAs, including 14 new miRNAs identified in this study. Conclusions: We provide here a set of new small RNAs, which contribute to the broader scene of the sRNAome of Phaseolus vulgaris. Thanks to the identification of the miRNA targets from degradome analysis and the construction of regulatory networks between the mature microRNAs, we draw up here the probable functional regulation associated with the sRNAome and particularly in N2-fixing symbiotic nodules. Small RNA sequencing from 5 Phaseolus vulgaris tissues
Project description:Cytosine methylation is a base modification that is often used by genomes to store information that is stably inherited through mitotic cell divisions. Most cytosine DNA methylation is stable throughout different cell types or by exposure to different environmental conditions in plant genomes. Here, we profile the epigenomes of ~100 Phaseolus vulgaris lines to explore the extent of natural epigenomic variation. We also use these data to determine the extent to which DNA methylation variants are linked to genetic variations.