Project description:With the rising cost and finite supply of fossil energy, there is an increasing economic incentive for the development of clean, efficient, and renewable domestic energy. The activities of microorganisms offer the potential conversion of lignocellulosic materials into fermentable sugars, usable for downstream fermentation processes. Strain TWXYL3, a thermophilic facultative anaerobe, was discovered in the Alvord Basin hydrothermal system in Oregon, USA. Phylogenetic analysis of strain TWXYL3 showed it to be 99% similar to the 16S rRNA gene of Anoxybacillus flavithermus WL (FJ950739). A. flavithermus TWXYL3 was shown to secrete a large multisubunit thermostable xylanase complex into the growth medium. Xylanase induction was achieved by resuspending the isolate in a selective xylan-containing medium. Extracellular xylanase activity showed a temperature optimum of 65°C and retained thermostability up to 85°C. Extracellular xylanase activity showed a bimodal pH optimum, with maxima at pH 6 and pH 8. Electrophoretic analysis of the extracellular xylanase shows 5 distinct proteins with xylanase activity. Strain TWXYL3 is the first xylanolytic isolate obtained from the Alvord Basin hydrothermal system and represents a new model system for development of processes where lignocellulosics are converted to biofuel precursors.
Project description:BACKGROUND:Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. RESULTS:We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. CONCLUSIONS:Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.
Project description:Preconditioning of Anoxybacillus flavithermus E16 and Geobacillus sp. strain F75 with cations prior to attachment often significantly increased (P ? 0.05) the number of viable cells that attached to stainless steel (by up to 1.5 log CFU/cm(2)) compared with unconditioned bacteria. It is proposed that the transition of A. flavithermus and Geobacillus spp. from milk formulations to stainless steel product contact surfaces in milk powder manufacturing plants is mediated predominantly by bacterial physiological factors (e.g., surface-exposed adhesins) rather than the concentrations of cations in milk formulations surrounding bacteria.