Project description:Penicillium digitatum is the pathogen of Green mold in Postharvest citrus. After inoculating Penicillium digitatum into the wound of citrus to infect it, transcriptome sequencing was carried out and compared with the results of transcriptome sequencing of Penicillium digitatum before inoculation in order to screen the differentially expressed genes and reveal its infection mechanism.
Project description:Candidatus Liberibacter asiaticus (Las) is an emergent bacterial pathogen associated with the devastating citrus Huanglongbing (HLB), also known as the greening disease. Vectored by the Asian Citrus Psyllid (Diaphorina citri), Las colonizes the phloem tissue of citrus. So far, efforts of cultivating Las in vitro have not been successful and dual-transcriptome analyses could only detect ~100 Las genes due to the low abundance of bacterial RNA in infected citrus/psyllid tissues. Therefore, the biology of this pathogen is poorly understood. Here, we established a procedure to enrich Las RNA for transcriptome analysis in order to obtain insights into the interactions of Las with its two hosts. We were able to confidently determine the expression profiles of >400 Las genes, including 106 that were differentially expressed between citrus and psyllids. Genes related to transcription/translation and defense were found to be upregulated in citrus; whereas genes upregulated in psyllids are involved in metabolic pathways related to tricarboxylic acid (TCA) cycle. Genes encoding the succinate dehydrogenase and NADH quinone oxidoreductase complexes, as well as the flagellar system are also expressed to higher levels in psyllids. We also analyzed the relative expression levels of Sec-delivered effectors, which are considered key virulence factors of Las. This work advances our understanding of the HLB biology and offers novel insight into the HLB pathogenesis.
Project description:HLB is suggested to be caused by the phloem-limited fastidious prokaryotic α-proteobacterium “Candidatus Liberibacter spp.” Previous studies focused on the proteome and transcriptome analyses of citrus 5 to 35-week-after “Ca. L. spp.” inoculation. In this study, gene expression profiles was analyzed using mandarin of Citrus reticulate Blanco cv. jiaogan leaves after 2-year infection with “Ca. L. asiaticus”.
Project description:Citrus disease resistance breeding has been advanced to introduce CTV resistance of trifoliate orange to citrus. Because the quality of the fruit of trifoliate ogate was low, backcross with citrus was necessary. In the case of citrus, it takes several years from flowering to obtaining next-generation seeds. Therefore, we generated transformants for the early flowering genes (citrus FLOWERING LOCUS T: CiFT) using CiFT co-expression vector construct and promoted generation. In Japan, it is difficult to plant transformants in the field. Therefore, it was decided to select null segregant lacking transgene from backcross progenies. In order to prove that the transgene has been completely removed, it is necessary to prove that no vector conract is present on the genome. Tthis matter was proved by CGH analysis.
Project description:Fruit ripening in Citrus is not well understood at the molecular level. Knowledge of the regulatory mechanism of citrus fruit ripening at the post-transcriptional level in particular is lacking. Here, we comparatively analyzed the miRNAs and their targeted genes in a spontaneous late-ripening mutant, ?Fengwan? sweet orange (MT) (Citrus sinensis L. Osbeck), and its wild-type counterpart ('Fengjie 72-1', WT). Using high-throughput sequencing of small RNAs and RNA degradome tags, we identified 107 known and 21 novel miRNAs, as well as 225 target genes. A total of 24 miRNAs (16 known miRNAs and 8 novel miRNAs) were shown to be differentially expressed between MT and WT. The expression pattern of several key miRNAs and their target genes during citrus fruit development and ripening stages was examined. Csi-miR156k, csi-miR159 and csi-miR166d suppressed specific transcription factors (GAMYBs, SPLs and ATHBs) that are supposed to be important regulators involved in citrus fruit development and ripening. In the present study, miRNA-mediated silencing of target genes was found under complicated and sensitive regulation in citrus fruit. The identification of miRNAs and their target genes provide new clues for future investigation of mechanisms that regulate citrus fruit ripening.
Project description:Identification of miRNAs in citrus reticulata exosomes;Identification of potential target genes of exosomal miRNAs in penicillium italicum; Comparison of differentially expressed genes between citrus exosome-treatedpenicillium italicum and wild type
Project description:Phytophthora parasitica is one of the most widespread Phytophthora species, which is known to cause root rot, foot rot/gummosis and brown rot of fruits in citrus. In this study, we have analyzed the transcriptome of a commonly used citrus rootstock Carrizo citrange in response to P. parasitica infection using the RNA-seq technology. In total, we have identified 6692 differentially expressed transcripts (DETs) among P. parasitica-inoculated and mock-treated roots. Of these, 3960 genes were differentially expressed at 24 hours post inoculation and 5521 genes were differentially expressed at 48 hours post inoculation. Gene ontology analysis of DETs suggested substantial transcriptional reprogramming of diverse cellular processes particularly the biotic stress response pathways in Carrizo citrange roots. Many R genes, transcription factors, and several other genes putatively involved in plant immunity were differentially modulated in citrus roots in response to P. parasitica infection. Analysis reported here lays out a strong foundation for future studies aimed at improving resistance of citrus rootstocks to P. parasitica.
Project description:HLB is suggested to be caused by the phloem-limited fastidious prokaryotic α-proteobacterium “Candidatus Liberibacter spp.” Previous studies focused on the proteome and transcriptome analyses of citrus 5 to 35-week-after “Ca. L. spp.” inoculation. In this study, gene expression profiles was analyzed using mandarin of Citrus reticulate Blanco cv. jiaogan leaves after 2-year infection with “Ca. L. asiaticus”. The Affymetrix GeneChip® citrus genome were applied to study the molecular pathways mediated by “Ca. L. asiaticus” inoculated 3-year-old jiaogan seedlings. Each of them was graft-inoculated with one sweet orange scions with or without “Ca. L. asiaticus” in Dectember, 2009. RNA samples from three mandarin trees infected with 'Candidatus Liberibacter asiaticus' and three uninfected trees were used for affymatrix genochip
Project description:The postharvest senescence processes of citrus fruits were analyzed transcriptomic. The present study was aimed to: further uncover the rind-flesh communication of hesperidium; characterize the differential storage behaviors of different citrus varieties; reveal the important changes during storing process; and demonstrate the specific non-climacteric characteristics of citrus fruits. We chose four major table fruit varieties of citrus: satsuma mandarin (Citrus unshiu Marc) (M), ponkan (Citrus reticulata Blanco) (K), newhall navel orange (Citrus sinensis L. Osbeck) (O) and shatian pummelo (Citrus grandis Osbeck) (P). They were sampled every 10 days during 50 DAH (days after harvest), almost covering the commercial storage period of loose-skin citrus.
Project description:The main objective of the present study was to identify citrus transcrition factors putatively involved in the juvenile to adult transition in citrus. A oligonucleotide microarray containing 1152 putative unigenes of citrus transcription factors was used.