Project description:ATAC-seq profiling of Nfat5 KO and wild type macrophages derived from bone marrow (primary cells), treated or not with Lipopolysaccharide (LPS).
Project description:<p>We are studying the natural history, pathogenesis and treatment of patients with WHIM syndrome, an immunodeficiency disorder characterized by warts, hypogammaglobulinemia, recurrent infections and neutropenia usually due to autosomal dominant gain-of-function mutations in chemokine receptor <i>CXCR4</i>. We have identified a patient born with WHIM syndrome and the WHIM mutation <i>CXCR4<sup>R334X</sup></i> who has been disease-free for 20 years and who lacks <i>CXCR4<sup>R334X</sup></i> in myeloid cells, the cells that drive disease manifestations. She is a genetic and hematopoietic mosaic, since she still has the mutation in lymphoid cells and non-hematopoietic cells. Cytogenetics and microarray analysis revealed that the mechanism of loss of the mutation was deletion of the mutant allele from one copy of chromosome 2. Whole genome sequencing of patient neutrophil and skin fibroblast genomic DNA revealed that the mechanism of deletion was chromothripsis, a process of chromosome shattering resulting in deletions and rearrangements of the non-deleted chromosomal segments. In the patient, this process evidently occurred in a single hematopoietic stem cell (HSC), resulting in deletion of the disease allele <i>CXCR4<sup>R334X</sup></i> and one copy of 163 other genes on chromosome 2. This HSC evidently acquired a growth advantage and repopulated the HSC population and the myeloid lineage. Consistent with this, studies using gene targeted mice in competitive bone marrow transplantation experiments revealed that selective <i>Cxcr4</i> haploinsufficiency (inactivation of one copy of <i>Cxcr4</i> and not of any other genes) was sufficient to confer a strong engraftment advantage over bone marrow cells from wild type mice as well as bone marrow cells from a mouse model of WHIM syndrome. These results suggest that <i>CXCR4</i> knockdown may be a useful strategy to enhance bone marrow engraftment in the absence of toxic bone marrow conditioning regimens.</p>
Project description:The microarray analysis is to investigate the different expression profile of microRNAs in bone marrow-derived progenitor cells from type 2 diabetic mice and healthy control mice. microRNA expression profiles were compared between bone marrow-derived progenitor cells from either type 2 diabetic db/db mice or their in-colony control litter db/+ mice. Total RNA was extracted from bone marrow-derived progenitor cells from either type 2 diabetic db/db mice (Jackson lab, # 000642) or their in-colony control litter db/+ mice. N=3 per group.
Project description:The microarray analysis is to investigate the different expression profile of microRNAs in bone marrow-derived progenitor cells from type 2 diabetic mice and healthy control mice. microRNA expression profiles were compared between bone marrow-derived progenitor cells from either type 2 diabetic db/db mice or their in-colony control litter db/+ mice.