Project description:We performed differential RNA-sequencing (dRNA-seq) experiments in both minimal medium (MM) plus β-hydroxybutyrate (β-HB) and MM plus tetralin (THN) of Sphingopyxis granuli strain TFA. The objective was mapping the Transcription Start Site (TSS) of each gene in the genome in both conditions, detecting non-coding RNAs (ncRNAs) and comparing the gene expression profile in a preferential carbon source (β-HB) versus tetralin (an aromatic pollutant). The dRNA-seq technique consists of using a termination exonuclease (TEX) to allow the discrimination of primary and processed transcripts. Furthermore, to detect Hfq-bound RNAs we co-immunoprecipitated RNA from the wild type strain (negative control) and a TFA strain with an Hfq-3xFlag tagged version (MPO501 strain) using an anti-3xFlag antibody and performed RNA-sequencing from the precipitated RNA.
Project description:Sphingomonads comprises a group of interesting aerobic bacteria because of their ubiquity and metabolic capability of degrading many recalcitrant contaminants. The tetralin-degrader Sphingopyxis granuli strain TFA has been recently reported as able to anaerobically grow using nitrate as the alternative electron acceptor and so far is the only bacterium with this ability within the sphingomonads group. To understand how strain TFA thrives under anoxic conditions, a differential transcriptomic analysis while growing under aerobic or anoxic conditions was performed. This analysis has been validated and complemented with transcription kinetics of representative genes of different functional categories. Results show an extensive change of the expression pattern of this strain in the different conditions. Consistently, the most induced operon in anoxia codes for proteases, presumably required for extensive changes in the protein profile. Besides genes that respond to lack of oxygen in other bacteria, there are a number of genes that respond to stress or to damage of macromolecules, including genes of the SOS DNA-damage response, which suggest that anoxic conditions represent a hostile environment for this bacterium. Interestingly, growth under anoxic conditions also resulted in repression of all flagellar and type IV pilin genes, which suggested that this strain shaves its appendages off while growing in anaerobiosis.
Project description:BackgroundSphingomonads are Alphaproteobacteria that belong to the Sphingomonas, Novosphingobium, Sphingopyxis or Sphingobium genera, They are physiologically diverse and broadly distributed in nature, playing important roles in oligotrophic environments and in the degradation of recalcitrant polyaromatic compounds, Sphingopyxis is a poorly studied genus of which only one representative (S. alaskensis RB2256) has been deeply characterized. In this paper we analyze the genomic features of S. granuli strain TFA (formerly Sphingomonas macrogoltabida) in comparison with the available Sphingopyxis sequenced genomes, to describe common characteristics of this genus and to highlight unique characteristics of strain TFA.ResultsThe TFA genome has been assembled in a single circular chromosome of 4.7 Mb. Genomic sequence analysis and proteome comparison re-assigned the TFA strain to the Sphingopyxis genus and the S. granuli species. Some regions of the TFA genome show high similarity (ca. 100%) to other bacteria and several genomic islands have been detected. Pathways for aromatic compound degradation have been predicted but no growth of TFA has been detected using these as carbon or nitrogen sources. Genes for nitrate respiration have been identified as TFA exclusive. Experimental data on anaerobic growth of TFA using nitrate as a terminal electron acceptor are also provided.ConclusionsSphingopyxis representatives form a compact phylogenetic group (with the exception of S. baekryungensis DSM 16222) that share several characteristics, such as being naturally resistant to streptomycin, having only one ribosomal operon, a low number of prophages and CRISPR sequences, absence of selenoproteins and presence of ectoin and other biosynthesis pathways for secondary metabolites. Moreover, the TFA genome organization shows evidence of the presence of putative integrative and conjugative elements (ICE) responsible for the acquisition of several characteristics by horizontal transfer mechanisms. Sphingopyxis representatives have been described as strict aerobes but anaerobic growth using nitrate as a terminal electron acceptor might confer an environmental advantage to the first S. granuli strain characterized at genomic level.
Project description:Sphingopyxis granuli strain TFA is an ?-proteobacterium that belongs to the sphingomonads, a group of bacteria well-known for its degradative capabilities and oligotrophic metabolism. Strain TFA is the only bacterium in which the mineralisation of the aromatic pollutant tetralin has been completely characterized at biochemical, genetic, and regulatory levels and the first Sphingopyxis characterised as facultative anaerobe. Here we report additional metabolic features of this ?-proteobacterium using metabolic modelling and the functional integration of genomic and transcriptomic data. The genome-scale metabolic model (GEM) of strain TFA, which has been manually curated, includes information on 743 genes, 1114 metabolites and 1397 reactions. This represents the largest metabolic model for a member of the Sphingomonadales order thus far. The predictive potential of this model was validated against experimentally calculated growth rates on different carbon sources and under different growth conditions, including both aerobic and anaerobic metabolisms. Moreover, new carbon and nitrogen sources were predicted and experimentally validated. The constructed metabolic model was used as a platform for the incorporation of transcriptomic data, generating a more robust and accurate model. In silico flux analysis under different metabolic scenarios highlighted the key role of the glyoxylate cycle in the central metabolism of strain TFA.