Project description:Sound vibration (SV) causes various developmental and physiological changes in plants. It strongly suggests the existence of sophisticated molecular mechanisms for SV perception and signaling in plants. However, the underlying molecular mechanism of SV-mediated plant responses remains elusive. Herein, we investigated the transcript changes in Arabidopsis thaliana upon five different single frequencies of SV treatment.
Project description:Sound vibration (SV), a mechanical stimulus, can trigger various molecular and physiological changes in plants. Herein, we investigated the effect of SV pre-treatment on Arabidopsis immunity to measure the priming potential of SV. Arabidopsis plants (fourteen-day-old) were treated with sound vibration (1000 Hz, 100 dB) for daily 3 hours up to 10 days in a soundproof chamber. The control plants were kept in a similar sound-proof chamber without SV exposure (daily 3 h) up to 10 days. After that, control and SV-treated plants were challenged with Botrytis cinerea spores. The result showed that SV pre-treatment increases the disease resistance of Arabidopsis against B. cinerea. Samples from three different time points were analyzed through microarray: (1) right after the 10th day of 3h SV treatment (0 h time point), and (2) after Botrytis spore inoculation (12 and 24 hpi time points). RNA was isolated from rosette leaves.
Project description:Sound wave can cause various developmental and physiological changes in plant. It strongly suggests the existence of sophisticated molecular mechanisms for sound perception in plant. Hence gene expression study is important. We investigated the global gene expression in Arabidopsis upon five different single frequency treatment. Sound treated Arabidopsis was used for RNA extraction and hybridization on Affymetrix microarrays. Five different frequency (250, 500, 1000, 2000 and 3000 Hz) was applied at 80 db on 20 days old plant for one hour. Immediate after treatment (0 hour) rosette samples were harvested.