Project description:MicroRNAs (miRNAs) play a important part in post-transcriptional gene regulation and have been shown to control many genes involved in various biological and metabolic processes. There have been extensive studies to discover miRNAs and analyze their functions in model plant species, such as Arabidopsis and rice and other plants. However, the number of miRNAs discovered in grape is relatively low and little is known about miRNAs responded gibberellin during fruit germination. In this study, a small RNA library from gibberellin grape fruits was sequenced by the high throughput sequencing technology. A total of 16,033,273 reads were obtained. 812,099 total reads representing 1726 unique sRNAs matched to known grape miRNAs. Further analysis confirmed a total of 149 conserved grapevine miRNA (Vv-miRNA) belonging to 27 Vv-miRNA families were validated, and 74 novel potential grapevine-specific miRNAs and 23 corresponding novel miRNAs* were discovered. Twenty-seven (36.5%) of the novel miRNAs exhibited differential QRT-PCR expression profiles in different development gibberellin-treated grapevine berries that could further confirm their existence in grapevine. QRT-PCR analysis on transcript abundance of 27 conserved miRNA family and the new candidate miRNAs revealed that most of them were differentially regulated by the gibberellin, with most conserved miRNA family and 26 miRNAs being specifically induced by gibberellin exposure. All novel sequences had not been earlier described in other plant species. In addition, 117 target genes for 29 novel miRNAs were successfully predicted. Our results indicated that miRNA-mediated gene expression regulation is present in gibberellin-treated grape berries. This study led to the confirmation of 101 known miRNAs and the discovery of 74 novel miRNAs in grapevine. Identification of miRNAs resulted in significant enrichment of the gibberellin of grapevine miRNAs and provided insights into miRNA regulation of genes expressed in grape berries. GSM604831 is the control for the gibberellin-treated sample.
Project description:Experimental research on the effects of abiotic stress over grapevine has mainly focused on water shortage. The adaptation of plants to stress is a complex response triggered by cascades of molecular networks involved in stress perception, signal transduction, and the expression of specific stress-related genes and metabolites. Approaches such as array-based transcript profiling allow assessing the expression of thousands of genes in control and stress tissues. Gene expression upon acute (heat and light) and steady (drought) individual stresses and field conditions were compared in two grapevine (Vitis vinifera L.) varieties, Trincadeira (TR) and Touriga Nacional (TN).
Project description:Plants regenerated from tissue culture frequently show somaclonal variation. In this study we compared the transcriptomic and epigenetic state of embryogenic callus of grapevine with leaves from mature grapevine plants. In particular, we focussed on the expression of transposable elements and changes in siRNA abundance and genome-wide methylation in these tissues.
Project description:MicroRNAs (miRNAs) play a important part in post-transcriptional gene regulation and have been shown to control many genes involved in various biological and metabolic processes. There have been extensive studies to discover miRNAs and analyze their functions in model plant species, such as Arabidopsis and rice and other plants. However, the number of miRNAs discovered in grape is relatively low and little is known about miRNAs responded gibberellin during fruit germination. In this study, a small RNA library from gibberellin grape fruits was sequenced by the high throughput sequencing technology. A total of 16,033,273 reads were obtained. 812,099 total reads representing 1726 unique sRNAs matched to known grape miRNAs. Further analysis confirmed a total of 149 conserved grapevine miRNA (Vv-miRNA) belonging to 27 Vv-miRNA families were validated, and 74 novel potential grapevine-specific miRNAs and 23 corresponding novel miRNAs* were discovered. Twenty-seven (36.5%) of the novel miRNAs exhibited differential QRT-PCR expression profiles in different development gibberellin-treated grapevine berries that could further confirm their existence in grapevine. QRT-PCR analysis on transcript abundance of 27 conserved miRNA family and the new candidate miRNAs revealed that most of them were differentially regulated by the gibberellin, with most conserved miRNA family and 26 miRNAs being specifically induced by gibberellin exposure. All novel sequences had not been earlier described in other plant species. In addition, 117 target genes for 29 novel miRNAs were successfully predicted. Our results indicated that miRNA-mediated gene expression regulation is present in gibberellin-treated grape berries. This study led to the confirmation of 101 known miRNAs and the discovery of 74 novel miRNAs in grapevine. Identification of miRNAs resulted in significant enrichment of the gibberellin of grapevine miRNAs and provided insights into miRNA regulation of genes expressed in grape berries. GSM604831 is the control for the gibberellin-treated sample. The mixture samples of young berries (one week after flowering) large berries (five week after flowering after flowering), and old berries (nine week after flowering) treated with gibberellin, respectively, were generated by deep sequencing, in triplicate, using Illumina 1G Genome Analyzer.
Project description:Plants regenerated from tissue culture frequently show somaclonal variation. In this study we compared the transcriptomic and epigenetic state of embryogenic callus of grapevine with leaves from mature grapevine plants. In particular, we focussed on the expression of transposable elements and changes in siRNA abundance and genome-wide methylation in these tissues.
Project description:Plants regenerated from tissue culture frequently show somaclonal variation. In this study we compared the transcriptomic and epigenetic state of embryogenic callus of grapevine with leaves from mature grapevine plants. In particular, we focussed on the expression of transposable elements and changes in siRNA abundance and genome-wide methylation in these tissues.
Project description:itis vinifera cv. Tannat is largely cultivated in Uruguay for the production of high quality red wines. Its most notable characteristic is an elevated content of polyphenolic compounds, which provide an intense purple color and remarkable antioxidant properties to the wine. To characterize the genetic components encoding this important phenotypic characteristic, the genome of the Uruguayan Tannat clone UY11 was sequenced to 134X coverage using the Illumina technology and assembled with a mixed approach of de novo assembly and iterative mapping on the PN40024 reference genome. An approach based on both reference-guided annotation and de novo transcript assembly of RNA-Seq data allowed the definition of 3,673 genes not previously annotated in PN40024 that we consider novel, and the discovery of 2,228 genes not shared with the grapevine reference genome that we consider private to Tannat. Expression analysis showed that private genes contributed substantially (more than 50%) to the overall expression of enzymes involved in phenol and polyphenol biosynthesis indicating that the dispensable portion of the grapevine genome contains many private genes which are likely to contribute to the peculiar phenotypic characteristics of this grapevine variety.