Project description:Fusarium graminearum (F.g) is responsible for Fusarium head blight (FHB), which is a destructive disease of wheat that accumulates mycotoxin such as deoxynivalenol (DON) and makes its quality unsuitable for end use. Several FHB resistant varieties development is going on world-wide. However the complete understanding of wheat defence response, pathogen (Fusarium graminearum) disease development mechanism and the gene crosstalk between organisms is still unclear. In our study focused to analyse pathogen (F. graminearum) molecular action in different Fusarium head blight resistance cultivars during the disease development. To understand the Fusarium graminearum pathogen molecular reaction, microarray gene expression analysis was carried out by using Fusarium graminearum (8 x 15k) Agilent arrays at two time points (3 & 7 days after infection) on three wheat genotypes (Japanese landrace cv. Nobeokabouzu-komugi - highly resistant, Chinese cv. Sumai 3 - resistant and Australian cv. Gamenya - susceptible), which spikes infected by Fusarium graminearum ‘H-3’strain. During the disease development the pathogen biomass as well as the expression of Trichothecene biosynthesis involved genes (Tri genes) in three wheat cultivars was determined. In our material no relation between fungus biomass and the disease symptoms were observed, however, it showed relation with fungus virulence factors expression (Tri genes). For the first time, we report the nature of Fusarium graminearum gene expression in the FHB-highly resistant cv. Nobeokabouzu-komugi during the disease development stage and the possible underlying molecular response.
Project description:To better understand the regulatory mechanisms of water stress response in wheat, the transcript profiles in roots of two wheat genotypes, namely, drought tolerant 'Luohan No.2' (LH) and drought susceptible 'Chinese Spring' (CS) under water-stress were comparatively analyzed by using the Affymetrix wheat GeneChip®. A total of 3831 transcripts displayed 2-fold or more expression changes, 1593 transcripts were induced compared with 2238 transcripts were repressed, in LH under water-stress; Relatively fewer transcripts were drought responsive in CS, 1404 transcripts were induced and 1493 were repressed. Comparatively, 569 transcripts were commonly induced and 424 transcripts commonly repressed in LH and CS under water-stress. 689 transcripts (757 probe sets) identified from LH and 537 transcripts (575 probe sets) from CS were annotated and classified into 10 functional categories, and 74 transcripts derived from 80 probe sets displayed the change ratios no less than 16 in LH or CS. Several kinds of candidate genes were differentially expressed between the LH and CS, which could be responsible for the difference in drought tolerance of the two genotypes.
Project description:Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from Triticum aestivum tissues (including leaves and spiklets infected with Fusarium and control). The high depth of the resulting datasets enabled us to examine in detail critical small RNA features as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the genome under study.
Project description:Wheat is the staple food of over 35% of the world’s population, accounts for 20% of all human calories, and its yield and quality improvement is a focus in the effort to meet new demands from population growth and changing diets. As the complexity of the wheat genome is unravelled, determining how it is used to build the protein machinery of wheat plants is a key next step in explaining detailed aspects of wheat growth and development. The specific functions of wheat organs during vegetative development and the role of metabolism, protein degradation and remobilisation in driving grain production are the foundations of crop performance and have recently become accessible through studies of the wheat proteome. With the aim of creating a resource complementary to current genome sequencing and assembly projects and to aid researchers in the specific analysis and measurement of wheat proteins of interest, we present a large scale, publicly accessible database of identified peptides and proteins derived from the proteome mapping of Triticum aestivum. This current dataset consists of twenty four organ and developmental samples in an online interactive resource allowing the selection, comparison and retrieval of proteomic data with rich biochemical annotation derived from multiple sources. Tissue specific sub-proteomes and ubiquitously expressed markers of the wheat proteome are identified alongside hierarchical assessment of protein functional classes and their presence in different tissues. The impact of wheat’s polyploid genome on proteome analysis and the effect on defining gene specific and protein family relationships is accounted for in the organisation of the data. The dataset will serve as a vehicle to build, refine and deposit confirmed targeted proteomic assays for wheat proteins and protein families to assess function.
Project description:In present experiment we evaluated the effects of the utrasonication of winter wheat seeds on seedling growth and development. Effect of treatment on the gene transcription and DNA methylation of seedlings were evaluated.
Project description:The pistillody mutant wheat (Triticum aestivum L.) plant HTS-1 exhibits homeotic transformation of stamens into pistils or pistil-like structures. Unlike common wheat varieties, HTS-1 produces three to six pistils per floret, potentially increasing the yield. Thus, HTS-1 is highly valuable in the study of floral development in wheat. In this study, we conducted RNA sequencing of the transcriptomes of the pistillody stamen (PS) and the pistil (P) from HTS-1 plants, and the stamen (S) from the non-pistillody control variety Chinese Spring TP to gain insights into pistil and stamen development in wheat.
Project description:Purpose: To identify abiotic stress responsive and tissue specific miRNAs at genome wide level in wheat (Triticum aestivum) Results: Small RNA libraries were constructed from four tissues (root, shoot, mature leaf and spikelets) and three stress treatments of wheat seedlings (control, high temperature, salinity and water-deficit). A total of 59.5 million reads were obtained by high throughput sequencing of eight wheat libraries, of which 32.5 million reads were found to be unique. Using UEA sRNA workbench we identified 47 conserved miRNAs belonging to 20 families, 1030 candidate novel and 51 true novel miRNAs. Several of these miRNAs displayed tissue specific expression whereas few were found to be responsive to abiotic stress treatments. Target genes were predicted for miRNAs identified in this study and their grouping into functional categories revealed that the putative targets were involved in diverse biological processes. RLM-RACE of predicted targets of three conserved miRNAs (miR156, miR160 and miR164) confirmed their mRNA cleavage, thus indicating their regulation at post-transcriptional level by corresponding miRNAs. Expression profiling of confirmed target genes of these miRNAs was also performed. Conclusions: This is the first comprehensive study on profiling of miRNAs in a variety of tissues and in response to several abiotic stresses in wheat. Our findings provide valuable resource for better understanding on the role of miRNAs in stress tolerance as well as plant development. Additionally, this information could be utilized for designing wheat plants for enhanced abiotic stress tolerance and higher productivity.
Project description:To better understand the regulatory mechanisms of water stress response in wheat, the transcript profiles in roots of two wheat genotypes, namely, drought tolerant 'Luohan No.2' (LH) and drought susceptible 'Chinese Spring' (CS) under water-stress were comparatively analyzed by using the Affymetrix wheat GeneChip®. A total of 3831 transcripts displayed 2-fold or more expression changes, 1593 transcripts were induced compared with 2238 transcripts were repressed, in LH under water-stress; Relatively fewer transcripts were drought responsive in CS, 1404 transcripts were induced and 1493 were repressed. Comparatively, 569 transcripts were commonly induced and 424 transcripts commonly repressed in LH and CS under water-stress. 689 transcripts (757 probe sets) identified from LH and 537 transcripts (575 probe sets) from CS were annotated and classified into 10 functional categories, and 74 transcripts derived from 80 probe sets displayed the change ratios no less than 16 in LH or CS. Several kinds of candidate genes were differentially expressed between the LH and CS, which could be responsible for the difference in drought tolerance of the two genotypes. Two common wheat (Triticum aestivum L.) cultivars, Luohan No.2 (LH) and Chinese Spring (CS), were used for this study. Seedlings at the two leaf stage were stressed by cultured in PEG solutions for 6h, and some other seedlings were cultured in tap water as control. Root samples of LH and CS at 6h after the stress treatment and untreated control were prepared for microarray analysis.
Project description:The study was conducted in order to find out the differential change in the transcript of tolerant and susceptible wheat cultivar under heat stress and to decipher the mechanism of thermotolerance in wheat by identifying novel genes and transcription factors involved in the pathways. Wheat cultivar HD2985 (thermotolerant) and HD2329 (thermosusceptible) were exposed to heat stress of 42 degree for 4h at pollination stage and samples were collected from both control and heat shock treated plants for further characterization.