ABSTRACT: Transcriptomic analysis of trout gill ionocytes in freshwater and seawater using laser capture microdissection combined with microarray analysis
Project description:Fish gills represent a complex organ that perform multiple physiological functions and is composed of several cell types. Among these cells, ionocytes are implicated in the maintenance of ion homeostasis. However, because the ionocyte represents only a small percent of whole gill tissue, its specific transcriptome can be overlooked among the numerous cell types included in the gill. The objective of this study is to better understand ionocyte functions by comparing the RNA expression of this cell type in freshwater and seawater adapted rainbow trout. To realize this objective, ionocytes were captured from gill cryosections using laser capture microdissection after immunohistochemistry. Then, transcriptome analyses were performed on an Agilent trout oligonucleotide microarray. Gene expression analysis identified 108 unique annotated genes differentially expressed between freshwater and seawater ionocytes, with a gene fold higher than 3. Most of these genes were up regulated in freshwater cells. Interestingly, several genes implicated in ion transport, extracellular matrix and structural cellular proteins appeared up regulated in freshwater ionocytes. Among them, several ion transporters, such as CIC2, SLC26A6, and NBC, were validated by qPCR and/or in situ hybridization. The latter technique allowed us to localize the transcripts of these ion transporters in only ionocytes and more particularly in the freshwater cells. Genes involved in metabolism and also several genes implicated in transcriptional regulation, cell signaling and the cell cycle were also over-expressed in freshwater ionocytes. In conclusion, laser capture microdissection combined with microarray analysis allowed for the determination of the cell signature of scarce cells in fish gills, such as ionocytes, and aided characterization of the transcriptome of these cells in freshwater and seawater adapted trout.
Project description:Background: Rainbow trout (Oncorhynchus mykiss) is a salmonid species with a complex life-history. Wild populations are naturally divided into freshwater residents and sea-run migrants. Migrants undergo an energy-demanding adaptation for life in seawater, known as smoltification, while freshwater residents display these changes in an attenuated magnitude and rate. Despite this, in seawater rainbow trout farming all animals are transferred to seawater. Under these circumstances, weeks after seawater transfer, a significant portion of the fish die (around 10%) or experience growth stunting (GS; around 10%), which represents an important profitability and welfare issue. The underlying causes leading to GS in seawater-transferred rainbow trout remain unknown. In this study, we aimed at characterising the GS phenotype in seawater-transferred rainbow trout using untargeted and targeted approaches. To this end, the liver proteome (LC-MS/MS) and lipidome (LC-MS) of GS and fast-growing phenotypes were profiled to identify molecules and processes that are characteristic of the GS phenotype. Moreover, the transcription, abundance or activity of key proteins and hormones related to osmoregulation (Gill Na+, K+–ATPase activity), growth (plasma IGF-I, and liver igf1, igfbp1b, ghr1 and ctsl) and stress (plasma cortisol) were measured using targeted approaches. Results: No differences in Gill Na+, K+–ATPase activity and plasma cortisol were detected between the two groups. However, a significant downregulation in plasma IGF-I and liver igf1 transcription pointed at this growth factor as an important pathomechanism for GS. Changes in the liver proteome revealed reactive-oxygen-species-mediated endoplasmic reticulum stress as a key mechanism underlying the GS phenotype. From the lipidomic analysis, key observations include a reduction in triacylglycerols and elevated amounts of cardiolipins, a characteristic lipid class associated with oxidative stress, in GS phenotype. Conclusion: While the triggers to the activation of endoplasmic reticulum stress are still unknown, data from this study point towards either an unresolved infection or a nutritional deficiency as underlying drivers of this phenotype.
Project description:Gene expression profiling of the hyperplastic growth zones of the late trout embryo myotome using laser capture microdissection and microarray analysis.
Project description:Rainbow trout (1000 fish) was exposed to the bacterial pathogen F. psychrophilum by simple bath challenge without any pre-treatment with hydrogen peroxide. Samples (fin clip for Affymetrix QTL analysis) were taken from 167 moribund fish during the course of infection. When mortality/morbidity ended (day 40) we euthanized a total of 197 specimens of the remaining fish and took samples for DNA (QTL analysis) and assigned the status: Survivor. For gene expression analysis we took samples from gill, spleen and liver between day 11 and 15 from fish with clinical signs (CS) and no clinical signs (NCS), whereas samples from survivors were taken at day 40.
Project description:The sea-run phenotype of rainbow trout (Oncorhynchus mykiss), like other anadromous salmonids, present a juvenile stage fully adapted to life in freshwater known as parr. Development in freshwater is followed by the smolt stage, where preadaptations needed for seawater life are developed making fish ready to migrate to the ocean, after which event they become post-smolts. While these three life stages have been studied using a variety of approaches, proteomics has never been used for such purpose. The present study characterised the blood plasma proteome of parr, smolt and post-smolt rainbow trout using a gel electrophoresis liquid chromatography tandem mass spectrometry approach alone or in combination with low-abundant protein enrichment technology (combinatorial peptide ligand library). In total, 1,822 proteins were quantified, 17.95% of them being detected only in plasma post enrichment. Across all life stages, the most abundant proteins were ankyrin-2, DNA primase large subunit, actin, serum albumin, apolipoproteins, hemoglobin subunits, hemopexin-like proteins and complement C3. When comparing the different life stages, 17 proteins involved in mechanisms to cope with hyperosmotic stress and retinal changes, as well as the downregulation of nonessential processes in smolts, were significantly different between parr and smolt samples. On the other hand, 11 proteins related to increased growth in post-smolts, and also related to coping with hyperosmotic stress and to retinal changes, were significantly different between smolt and post-smolt samples. Overall, this study presents a series of proteins with the potential to complement current seawater-readiness assessment tests in rainbow trout, which can be measured non-lethally in an easily accessible biofluid. Furthermore, this study represents a first in-depth characterisation of the rainbow trout blood plasma proteome, having considered three life stages of the fish and used both fractionation alone or in combination with enrichment methods to increase protein detection.
Project description:Time is often not characterized as a variable in ecotoxicogenomic studies. In this study, the temporal kinetics in gene expression were determined during exposure to crude oil and a subsequent recovery period. Juvenile rainbow trout, Oncorhynchus mykiss, were exposed for 96 hours to the water accomodated fractions of 0.4, 2 or 10 mg l-1 crude oil loadings. Following 96 h of exposure, fish were transferred to recovery tanks for 96 h. Gill and liver samples were collected after 24 and 96 h of exposure, and after 96 h of recovery for RNA extraction and microarray analysis. Fluorescently labeled cDNA was hybridized against matched controls, using salmonid cDNA arrays. Each exposure scenario generated unique patterns of altered gene expression. More genes responded to crude oil in the gill than in liver. In the gill, 1137 genes had altered expression at 24 hours, 2003 genes had altered expression levels at 96 h of exposure, yet by 96 h of recovery, no genes were significant ly altered in expression. The Gene Ontology terms associated with gill-responsive genes implicated membrane narcosis, a toxic mechanism for crude oil. By contrast, in the liver at 10 mg l-1, only five genes were changed at 24 h, yet 192 genes had altered expression after 96 h recovery. At 2 mg l-1 in the liver, many genes had altered regulation at all three timepoints. The 0.4 mg l-1 loading also showed 289 genes upregulated at 24 h after exposure. The Gene Ontology terms associated with altered expression in the liver suggested that the processes of protein synthesis, xenobiotic metabolism, and oxidoreductase activity were altered. The concentration-responsive expression profile of cytochrome P450 1A, a biomarker for oil exposure, did not predict the majority of gene expression profiles in any tissue or dose, since direct relationships with dose were not observed for most genes. While the genes and their associated functions agree with known modes of toxic action for crude oil, the gene lists obtained do not agree with our previously published work, presumably due to array analysis procedures. These results demonstrate that changes in gene expression with time and dose should be characterized in controlled laboratory settings before responses from field collected organisms are interpreted, and that processes for analyzing microarray data need to be developed such that standardized gene lists are developed, or that analysis is gene list independent before arrays are as a monitoring tool.