Project description:BCOR is a component of a variant Polycomb group repressive complex 1 (PRC1) complex. Recently, we and others reported recurrent somatic BCOR loss-of-function mutations in myelodysplastic syndrome and acute myelogenous leukaemia (AML). However the role of BCOR in normal hematopoiesis is largely unknown. Here, we explored the function of BCOR in myeloid cells using myeloid murine cell models with Bcor conditional loss-of-function or overexpression alleles. Bcor mutant bone marrow cells showed significantly higher proliferation and differentiation rates with reduced protein levels of RING1B, a ubiquitin ligase subunit of PRC1 family complexes. Global RNA expression profiling in murine cells and AML patient samples with BCOR loss-of-function mutation suggested that loss of BCOR expression is associated with proliferation and myeloid differentiation and decreased stem cell quiescence. Further, we used a MLL-AF9 murine model of AML and found that loss of Bcor increased serial replating efficiency, enhanced MLL-AF9 in blocking cell differentiation, and increased expression of Evi1 which is associated with leukemic transformation. Our results strongly suggest that BCOR plays an indispensable role in maintaining hematopoietic stem cell (HSC) quiescence by inhibiting myeloid stem cell proliferation and differentiation and offer a mechanistic explanation for how BCOR regulates gene expression such as Hox genes. Normal karyotype AML primary cells with either wild type BCOR (6 cases) or destructive mutated BCOR (6 cases) were collected and subjected to RNA expression microarray study
Project description:BCOR is a component of a variant Polycomb group repressive complex 1 (PRC1) complex. Recently, we and others reported recurrent somatic BCOR loss-of-function mutations in myelodysplastic syndrome and acute myelogenous leukaemia (AML). However the role of BCOR in normal hematopoiesis is largely unknown. Here, we explored the function of BCOR in myeloid cells using myeloid murine cell models with Bcor conditional loss-of-function or overexpression alleles. Bcor mutant bone marrow cells showed significantly higher proliferation and differentiation rates with reduced protein levels of RING1B, a ubiquitin ligase subunit of PRC1 family complexes. Global RNA expression profiling in murine cells and AML patient samples with BCOR loss-of-function mutation suggested that loss of BCOR expression is associated with proliferation and myeloid differentiation and decreased stem cell quiescence. Further, we used a MLL-AF9 murine model of AML and found that loss of Bcor increased serial replating efficiency, enhanced MLL-AF9 in blocking cell differentiation, and increased expression of Evi1 which is associated with leukemic transformation. Our results strongly suggest that BCOR plays an indispensable role in maintaining hematopoietic stem cell (HSC) quiescence by inhibiting myeloid stem cell proliferation and differentiation and offer a mechanistic explanation for how BCOR regulates gene expression such as Hox genes. We took advantage of a mouse conditional Bcor allele which has exons 9 and 10 been flanked by LoxP sites to allow their removal via expression of Cre recombinase. Excision of these exons results in a frame shift and a premature stop codon causing nonsense mediated decay and/or carboxy-terminal deletion of the BCOR protein. CD34+ cells were sorted from control or Bcor mutant cells cultured under myeloid stem/progenitor conditions (IL3, 6 and SCF). We used microarrays to detail the global programme of gene expression in Control and Bcor mutant CD34+ cells.
Project description:BCOR is a component of a variant Polycomb group repressive complex 1 (PRC1) complex. Recently, we and others reported recurrent somatic BCOR loss-of-function mutations in myelodysplastic syndrome and acute myelogenous leukaemia (AML). However the role of BCOR in normal hematopoiesis is largely unknown. Here, we explored the function of BCOR in myeloid cells using myeloid murine cell models with Bcor conditional loss-of-function or overexpression alleles. Bcor mutant bone marrow cells showed significantly higher proliferation and differentiation rates with reduced protein levels of RING1B, a ubiquitin ligase subunit of PRC1 family complexes. Global RNA expression profiling in murine cells and AML patient samples with BCOR loss-of-function mutation suggested that loss of BCOR expression is associated with proliferation and myeloid differentiation and decreased stem cell quiescence. Further, we used a MLL-AF9 murine model of AML and found that loss of Bcor increased serial replating efficiency, enhanced MLL-AF9 in blocking cell differentiation, and increased expression of Evi1 which is associated with leukemic transformation. Our results strongly suggest that BCOR plays an indispensable role in maintaining hematopoietic stem cell (HSC) quiescence by inhibiting myeloid stem cell proliferation and differentiation and offer a mechanistic explanation for how BCOR regulates gene expression such as Hox genes.
Project description:BCOR is a component of a variant Polycomb group repressive complex 1 (PRC1) complex. Recently, we and others reported recurrent somatic BCOR loss-of-function mutations in myelodysplastic syndrome and acute myelogenous leukaemia (AML). However the role of BCOR in normal hematopoiesis is largely unknown. Here, we explored the function of BCOR in myeloid cells using myeloid murine cell models with Bcor conditional loss-of-function or overexpression alleles. Bcor mutant bone marrow cells showed significantly higher proliferation and differentiation rates with reduced protein levels of RING1B, a ubiquitin ligase subunit of PRC1 family complexes. Global RNA expression profiling in murine cells and AML patient samples with BCOR loss-of-function mutation suggested that loss of BCOR expression is associated with proliferation and myeloid differentiation and decreased stem cell quiescence. Further, we used a MLL-AF9 murine model of AML and found that loss of Bcor increased serial replating efficiency, enhanced MLL-AF9 in blocking cell differentiation, and increased expression of Evi1 which is associated with leukemic transformation. Our results strongly suggest that BCOR plays an indispensable role in maintaining hematopoietic stem cell (HSC) quiescence by inhibiting myeloid stem cell proliferation and differentiation and offer a mechanistic explanation for how BCOR regulates gene expression such as Hox genes.
Project description:Haematopoietic stem cells (HSCs) tightly regulate their quiescence, proliferation, and differentiation to generate blood cells during the entire lifetime. The mechanisms by which these critical activities are balanced are still unclear. Here, we report that Macrophage-Erythroblast Attacher (MAEA, also known as EMP), a receptor thus far only identified in erythroblastic island1, is a membrane-associated E3 ubiquitin ligase essential for HSC maintenance and lymphoid commitment. Maea is highly expressed in HSCs and its deletion in mice severely impairs HSC quiescence and function and leads to a lethal myeloproliferative syndrome. By contrast, MAEA expression is essential for the development of acute myeloid leukaemia (AML) and up-regulated in human and mouse AML. Mechanistically, we have found that the surface expression of several haematopoietic cytokine receptors (e.g. MPL, FLT3) is stabilised in absence of Maea, thereby prolonging their intracellular signalling. Additionally, the autophagy flux in HSCs, but not in mature haematopoietic cells, is dramatically impaired. Administration of autophagy-inducing compounds rescues the functional defects of Maea-deficient HSCs. These results thus suggest that MAEA is a pivotal E3 ubiquitin ligase guarding HSC function via autophagy.
Project description:The paper describes a model of acute myeloid leukaemia.
Created by COPASI 4.26 (Build 213)
This model is described in the article:
Optimal control of acute myeloid leukaemia
Jesse A. Sharp, Alexander P Browning, Tarunendu Mapder, Kevin Burrage, Matthew J Simpson
Journal of Theoretical Biology 470 (2019) 30–42
Abstract:
Acute myeloid leukaemia (AML) is a blood cancer affecting haematopoietic stem cells. AML is routinely treated with chemotherapy, and so it is of great interest to develop optimal chemotherapy treatment strategies. In this work, we incorporate an immune response into a stem cell model of AML, since we find that previous models lacking an immune response are inappropriate for deriving optimal control strategies. Using optimal control theory, we produce continuous controls and bang-bang controls, corre- sponding to a range of objectives and parameter choices. Through example calculations, we provide a practical approach to applying optimal control using Pontryagin’s Maximum Principle. In particular, we describe and explore factors that have a profound influence on numerical convergence. We find that the convergence behaviour is sensitive to the method of control updating, the nature of the control, and to the relative weighting of terms in the objective function. All codes we use to implement optimal control are made available.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models .
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide.
Please refer to CC0 Public Domain Dedication for more information.
Project description:Adult hippocampal neurogenesis is important for certain forms of cognition and failing neurogenesis has been implicated in neuropsychiatric diseases. The neurogenic capacity of hippocampal neural stem/progenitor cells (NSPCs) depends on a balance between quiescent and proliferative states. However, how this balance is regulated remains poorly understood. Here we show that the rate of fatty acid oxidation (FAO) defines quiescence vs. proliferation in NSPCs. Quiescent NSPCs show high levels of carnitine palmitoyltransferase 1a (Cpt1a)-dependent FAO, which is downregulated in proliferating NSPCs. Pharmacological inhibition and conditional deletion of Cpt1a in vitro and in vivo leads to altered NSPC behavior, showing that Cpt1a-dependent FAO is required for stem cell maintenance and proper neurogenesis. Strikingly, experimental manipulation of malonyl-CoA, the metabolite that regulates levels of FAO, is sufficient to induce exit from quiescence and to enhance NSPC proliferation. Thus, the data presented here identify a shift in FAO metabolism that governs NSPC behavior and suggest an instructive role for fatty acid metabolism in regulating NSPC activity.
Project description:The ubiquitin ligase Huwe1 regulates stem cell quiescence, maintenance and lymphoid specification by controlling the expression of N-Myc.