Project description:Application of genome-scale 'omics approaches to dissect subcellular pathways and regulatory networks governing the fast-growing response of Synechococcus sp. PCC 7002 response to variable irradience levels. We employed controlled cultivation and next-generation sequencing technology to identify transcriptional responses of euryhaline unicellular cyanobacterium Synechococcus sp. PCC 7002 grown under steady state conditions at six irradiance levels ranging from 33 to 760 µmol photons m-2 sec-1.
Project description:Application of genome-scale 'omics approaches to dissect subcellular pathways and regulatory networks governing the fast-growing response of Synechococcus sp. PCC 7002 response to variable irradience levels.
Project description:Primary productivity of open ocean environments, such as those inhabited by marine picocyanobacteria Synechococcus sp.WH8102, are often limited by low inorganic phosphate (P). To observe how this organism copes with P starvation, we constructed a full genome microarray and examined differences in gene expression under P-limited and P-replete growth conditions. To determine the temporal nature of the responses, comparisons were made for cells newly entered into P-stress (at a time point corresponding to the induction of extracellular alkaline phosphatase activity) and a later time point (late log phase). In almost all instances the P starvation response was transitory, with 36 genes showing significant upregulation (>log2 fold) while 23 genes were highly downregulated at the early time point; however, these changes in expression were maintained for only five of the upregulated genes. Knockout mutants were constructed for genes SYNW0947 or SYNW0948, comprising a two component regulator hypothesized to play a key role in regulating the response to P-limitation. A high degree of overlap in the sets of genes affected by P-limited conditions and in the knockout mutants supports this hypothesis; however there is some indication that other regulators may play a role in this response in Synechococcus sp. WH8102. Consistent with what has been observed in many other cyanobacteria, the Pho regulon of this strain is comprised largely of genes for alkaline phosphatases, P transport or P metabolism. Interestingly, however, the exact composition and arrangement of the Pho regulon appears highly variable in marine cyanobacteria.