Project description:Cartilage Oligomeric Matrix Protein (COMP) is a soluble pentameric protein expressed in cartilage and involved in collagen organization. Publicly available mRNA expression array data indicated that COMP is overexpressed in breast cancer tissue. Tissue microarrays derived from two cohorts of patients with breast cancer (n = 122 and n = 498) were immunostained, which revealed varying amounts of COMP, both in the tumor cells and surrounding stroma. High levels of COMP in tumor cells correlated, independently of other variables, with poor survival and faster recurrence (metastases). Breast cancer cells, MDA-MB-231, stably expressing COMP were injected into the mammary fat pad of SCID (CB-17/Icr-Prkdcscid/Rj) mice. Tumors expressing COMP grew to significantly larger volumes and had increased metastasis as compared to control, mock transfected, tumors. In vitro experiments confirmed that COMP expressing cells were more invasive, which was in part related to an upregulation of metalloprotease-9. Further, microarray analyses of gene expression in tumors formed in vivo showed that expression of COMP was protective against endoplasmatic reticulum stress. This observation was confirmed in vitro since COMP expressing cells showed better survival than mock when treated with brefeldin, which leads to accumulation of proteins in endoplasmatic reticulum. The mRNA pathway analyses also implicated a metabolic switch leading to a more severe Warbug effect, which was confirmed in vitro by measurement of cell respiration and lactate production. In conclusion, COMP is a novel biomarker in breast cancer, which contributes to the severity of the disease by several novel molecular mechanisms.
Project description:Integrins are a major class of heterodimeric adhesion receptors composed of an a and b subunit that mediate cell adhesion to the extracellular matrix (ECM). The extracellular matrix protein fibronectin is important for early vertebrate development, and Integrin a5b1 and aVb3 are the two primary fibronectin receptors. To better define the integrin – ECM protein network at 10-13 somite stage of zebrafish development, we performed co-immunoprecipitation and Mass Spectrometry (MS) based proteomics using FLAG-tagged Integrin a5, aV, and aVb3 expressed in maternal zygotic a5 mutant (MZa5-/-) embryos. We found that Integrin a5b1 and aVb1 are the functional fibronectin receptors, whereas Integrin aVb3 displayed low affinity to both fibronectins (Fn1a and Fn1b). In addition, basement membrane ligands Laminins (lama1, lamb1a, lamc1) are roughly equal in all three datasets while Thrombospondins (thbs3b, thbs4b) and cartilage oligomeric matrix protein (comp/thbs5) are found exclusively in the aV dataset. Our results suggest a diverse role of aV class integrins in ECM protein recruitment.
Project description:To screen for candidate genes that may contribute to the pathogenesis of GalT-II deficiency. Transcriptome-wide expression profiling using the Affymetrix Gene 1.0 ST platform comparing the gene expression patterns of skin fibroblasts of the two affected sisters with those of three healthy individuals. Abstract: Mutations in B3GALT6, encoding the galactosyltransferase II (GalT-II) involved in the synthesis of the glycosaminoglycan (GAG) linkage region of proteoglycans (PGs), have recently been associated with a spectrum of connective tissue disorders, including spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMDJL1) and Ehlers–Danlos-like syndrome. Here, we report on two sisters compound heterozygous for two novel B3GALT6 mutations that presented with severe short stature and progressive kyphoscoliosis, joint hypermobility and laxity, hyperextensible skin, platyspondyly, short ilia, and elbow malalignment. Microarray-based transcriptome analysis revealed the differential expression of several genes encoding extracellular matrix (ECM) structural components, including COMP, SPP1, COL5A1, and COL15A1, enzymes involved in GAG synthesis and in ECM remodeling, such as CSGALNACT1, CHPF, LOXL3, and STEAP4, signaling transduction molecules of the TGFβ/BMP pathway, i.e., GDF6, GDF15, and BMPER, and transcription factors of the HOX and LIM families implicated in skeletal and limb development. Immunofluorescence analyses confirmed the down-regulated expression of some of these genes, in particular of the cartilage oligomeric matrix protein and osteopontin, encoded by COMP and SPP1, respectively, and showed the predominant reduction and disassembly of the heparan sulfate specific GAGs, as well as of the PG perlecan and type III and V collagens. The key role of GalT-II in GAG synthesis and the crucial biological functions of PGs are consistent with the perturbation of many physiological functions that are critical for the correct architecture and homeostasis of various connective tissues, including skin, bone, cartilage, tendons, and ligaments, and generates the wide phenotypic spectrum of GalT-II-deficient patients.
Project description:Breast cancer is the leading type of cancer in women. Breast cancer brain metastasis is considered as an essential issue in breast cancer patients. Membrane proteins play important roles in breast cancer brain metastasis that contributes to the cell adhesion and penetration of blood-brain barrier. To achieve a deeper insight of the mechanism of breast cancer brain metastasis, liquid chromatography tandem mass spectrometry (LC-MS/MS) was performed to analyze the enriched membrane proteomes from six different breast cancer cell lines. Quantitative proteomic data of all cell lines were compared with MDA-MB-231BR which has the specific brain metastasis capacity. 1239 proteins were identified and 990 were quantified with more than 70% of membrane proteins in all cell lines. Each cell line can be separated apart from others in PCA. Ingenuity pathway analysis (IPA) supported the high brain metastatic ability of 231BR and suggested importance of the up-regulation of integrin proteins and down-regulation of EPHA in brain metastasis. 28 proteins were observed unique expression alteration in 231BR. The up-regulation of NPM1, hnRNP Q, hnRNP K and eIF3l and the down-regulation of TUBB4B and TUBB were observed to be associated with the brain metastasis cell line and may contributes to the breast cancer brain metastasis.
Project description:The transcription factor GATA3 is essential for luminal cell differentiation during mammary gland development and critical for formation of the luminal subtypes of breast cancer. Ectopic expression of GATA3 promoted global alterations of the transcriptome of basal triple-negative breast cancer cells resulting in molecular and cellular changes associated with a more differentiated, luminal tumor subtype and a concomitant reduction in primary tumor growth, lung metastasis, and macrophage recruitment at the metastatic site. Importantly, we demonstrate that the inhibition of metastases by GATA3 results from the suppression of lysyl oxidase (LOX) expression, a metastasis promoting matrix protein that affects cell proliferation, cross-linking of extracellular collagen types, and establishment of the metastatic niche. There are 2 samples sent in triplicates.
Project description:Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disorder caused by mutations in the Dystrophin gene with no therapeutic option. To bridge the gap between preclinical and therapeutic evaluation studies, we have generated a rat model for DMD that carries an exon 52 deletion (R DMDdel52) causing a complete lack of dystrophin protein. Here we show that R DMDdel52 animals recapitulated human DMD pathophysiological trajectory more faithfully than the mdx mouse model. We report that R DMDdel52 rats displayed progressive and severe skeletal muscle loss associated with fibrotic deposition, fat infiltration and fibre type switch. Early fibrosis was also apparent in the cardiac muscle. These histological modifications led to severe muscle, respiratory and cardiac functional impairments leading to premature death around one year. Moreover, DMD muscle exhibited systemic inflammation with a mixed M1/M2 phenotype. A comparative single cell RNAseq analysis of the diaphragm muscle was performed, revealing cellular populations alteration and molecular modifications in all muscle cell types. We show that DMD fibroadipogenic progenitors produced elevated levels of cartilage oligomeric matrix protein (COMP), a glycoprotein responsible for modulating homeostasis of extracellular matrix, and whose increased concentration correlated with muscle fibrosis both in R DMDdel52 rats and human patients. Fibrosis is a component of tissue remodelling impacting the whole musculature of DMD patients, at the tissue level but most importantly at the functional level. We therefore propose that this specific biomarker can optimize the prognostic monitoring of functional improvement of patients included in clinical trials.
Project description:Long non-coding RNAs (lncRNAs) are master regulators of gene expression and have recently emerged as potential innovative therapeutic targets. The deregulation of lncRNA expression patterns has been associated with age-related and noncommunicable diseases, including osteoporosis and bone tumors. However, the specific role of lncRNAs in physiological or pathological conditions in the bone tissue still needs to be further clarified, for their exploitation as therapeutic tools. In the present study, we evaluate the potential of the lncRNA CASC2 as a regulator of osteogenic differentiation and mineralization. Results show that CASC2 expression is decreased during osteogenic differentiation of human bone marrow-derived Mesenchymal Stem/Stromal cells (MSCs). CASC2 knockdown using small interfering RNA (siCASC2) increases the expression of the late osteogenic marker Bone Sialoprotein (BSP), but does not impact ALP staining levels, or the expression of early osteogenic transcripts including RUNX2 and OPG. Although siCASC2 does not impact hMSC proliferation nor apoptosis, it promotes the mineralization of hMSC cultured under osteogenic-inducing conditions, as shown by the increase of calcium deposits. Mass spectrometry-based proteomic analysis revealed that 89 proteins are regulated by CASC2 at late osteogenic stages, including proteins associated with bone diseases or anthropometric and musculoskeletal traits. Specifically, the Cartilage Oligomeric Matrix Protein (COMP) is highly enhanced by CASC2 knockdown at late stages of osteogenic differentiation, at either transcriptional and protein level. Inhibition of COMP impairs osteoblasts mineralization as well as the expression of BSP levels. The results indicate that lncRNA CASC2 regulates late osteogenesis and mineralization in hMSC via COMP and BSP. In conclusion, this study suggests lncRNA CASC2 as a potential new therapeutic target in bone mineralization.
Project description:Autologous chondrocyte transplantation (ACT) is a routine technique to regenerate focal cartilage lesions. However, patients with osteoarthritis (OA) are lacking an appropriate long-lasting treatment alternative, partly since it is not known if chondrocytes from OA patients have the same chondrogenic differentiation potential as chondrocytes from donors not affected by OA. Articular chondrocytes from patients with OA undergoing total knee replacement (Mankin Score >3, Ahlbäck Score >2) and from patients undergoing ACT, here referred to as normal donors (ND), were isolated applying protocols used for ACT. Their chondrogenic differentiation potential was evaluated both in high-density pellet and scaffold (Hyaff-11) cultures by histological proteoglycan assessment (Bern Score) and immunohistochemistry for collagen types I and II. Chondrocytes cultured in monolayer and scaffolds were subjected to gene expression profiling using genome-wide oligonucleotide microarrays. Expression data were verified by using quantitative RT-PCR. Chondrocytes from ND and OA donors demonstrated accumulation of comparable amounts of cartilage matrix components, including sulphated proteoglycans and collagen types I and II. The mRNA expression of cartilage markers (COL2A1, COMP, aggrecan, CRTL1, SOX9) and genes involved in matrix synthesis (biglycan, COL9A2, COL11A1, TIMP4, CILP2) was highly induced in 3D cultures of chondrocytes from both donor groups. Genes associated with hypertrophic or OA cartilage (COL10A1, RUNX2, periostin, ALP, PTHR1, MMP13, COL1A1, COL3A1) were not significantly regulated between the two groups of donors. The expression of 661 genes, including COMP, FN1, and SOX9, were differentially regulated between OA and ND chondrocytes cultured in monolayer. During scaffold culture, the differences diminished between the OA and ND chondrocytes, and only 184 genes were differentially regulated. Only few genes were differentially expressed between OA and ND chondrocytes in Hyaff-11 culture. The risk of differentiation into hypertrophic cartilage does not seem to be increased for OA chondrocytes. Our findings suggest that the chondrogenic capacity is not significantly affected by OA and OA chondrocytes fulfill the requirements for matrix-associated ACT. Experiment Overall Design: Gene expression profiles of monolayer cultures (ML; passage 2) and Hyaff-11 scaffold cultures (3D; 14 days in vitro) of chondrocytes from 3 normal donors (ND; underwent ACT treatment) and 3 donors suffering from Osteoarthritis (OA; underwent knee replacement surgery) were determined. Comparative analyses between 3D and ML cultures (3D vs. ML) were performed to assess differentiation capacity of ND and OA chondrocytes. Furthermore, OA-related differences were determined comparing OA and ND monolayers as well as scaffold cultures (each OA vs. ND).
Project description:The transcription factor GATA3 is essential for luminal cell differentiation during mammary gland development and critical for formation of the luminal subtypes of breast cancer. Ectopic expression of GATA3 promoted global alterations of the transcriptome of basal triple-negative breast cancer cells resulting in molecular and cellular changes associated with a more differentiated, luminal tumor subtype and a concomitant reduction in primary tumor growth, lung metastasis, and macrophage recruitment at the metastatic site. Importantly, we demonstrate that the inhibition of metastases by GATA3 results from the suppression of lysyl oxidase (LOX) expression, a metastasis promoting matrix protein that affects cell proliferation, cross-linking of extracellular collagen types, and establishment of the metastatic niche.
Project description:Autologous chondrocyte transplantation (ACT) is a routine technique to regenerate focal cartilage lesions. However, patients with osteoarthritis (OA) are lacking an appropriate long-lasting treatment alternative, partly since it is not known if chondrocytes from OA patients have the same chondrogenic differentiation potential as chondrocytes from donors not affected by OA. Articular chondrocytes from patients with OA undergoing total knee replacement (Mankin Score >3, Ahlbäck Score >2) and from patients undergoing ACT, here referred to as normal donors (ND), were isolated applying protocols used for ACT. Their chondrogenic differentiation potential was evaluated both in high-density pellet and scaffold (Hyaff-11) cultures by histological proteoglycan assessment (Bern Score) and immunohistochemistry for collagen types I and II. Chondrocytes cultured in monolayer and scaffolds were subjected to gene expression profiling using genome-wide oligonucleotide microarrays. Expression data were verified by using quantitative RT-PCR. Chondrocytes from ND and OA donors demonstrated accumulation of comparable amounts of cartilage matrix components, including sulphated proteoglycans and collagen types I and II. The mRNA expression of cartilage markers (COL2A1, COMP, aggrecan, CRTL1, SOX9) and genes involved in matrix synthesis (biglycan, COL9A2, COL11A1, TIMP4, CILP2) was highly induced in 3D cultures of chondrocytes from both donor groups. Genes associated with hypertrophic or OA cartilage (COL10A1, RUNX2, periostin, ALP, PTHR1, MMP13, COL1A1, COL3A1) were not significantly regulated between the two groups of donors. The expression of 661 genes, including COMP, FN1, and SOX9, were differentially regulated between OA and ND chondrocytes cultured in monolayer. During scaffold culture, the differences diminished between the OA and ND chondrocytes, and only 184 genes were differentially regulated. Only few genes were differentially expressed between OA and ND chondrocytes in Hyaff-11 culture. The risk of differentiation into hypertrophic cartilage does not seem to be increased for OA chondrocytes. Our findings suggest that the chondrogenic capacity is not significantly affected by OA and OA chondrocytes fulfill the requirements for matrix-associated ACT. Keywords: time course, cell type comparison, tissue engineered cartilage; osteoarthritis; Hyaff-11 scaffold; human chondrocytes; gene expression profiling; regenerative medicine; differentiation potential