Project description:Our data suggest that all SR proteins contribute to mRNA export via NXF1. To identify endogenous export targets we depleted all seven SR proteins individually from P19 WT cells prepared cytoplasmic fractions. We sequenced the cytoplasmic fraction and as a control whole celll RNA from the identical sample.
Project description:Our data suggest that all SR proteins contribute to mRNA export via NXF1. To identify endogenous export targets we depleted all seven SR proteins individually from P19 WT cells prepared cytoplasmic fractions. We sequenced the cytoplasmic fraction and as a control whole celll RNA from the identical sample. Knockdown of seven SR Proteins plus control, total RNA and cytoplasmic RNA, polyA+ enriched, 2 biological replicates per condition, 2 technical replicates per condition
Project description:Members of the SR protein family of RNA binding proteins play numerous roles in gene expression, including the regulation of pre-mRNA splicing, mRNA export, and translation. How SR proteins coordinate gene expression programs has been largely unexplored, and comprehensive knowledge of endogenous mRNA targets is lacking. Gene expression changes upon SRp20 or SRp75 RNAi in P19 parental, SRp75-BAC, and SRp20-BAC cells were measured with mouse whole genome microarrays. The knockdown of either SRp20 or SRp75 led to up- or downregulation of specific transcripts. Phenotypic rescue in the SRp75-BAC, and SRp20-BAC cells demonstrated functionality of the GFP-tagged SR proteins, and showed the specificity of the knockdowns.
Project description:Using RNA-seq, we characterize the global AS regulation of the eight Drosophila SR protein family members RNA-seq experiments on two replicate samples from 8 individual SR protein knockdown (exptGroup=S), two replicates of simultaneous SR protein knockdown (XL6:B52 & SC35:B52) (exptGroup=D). Each exptGroup includes duplicate of its own non-specific (NS) controls.
Project description:We used GFP-tagged SR proteins expressed at endogenous levels and iCLIP to identify and compare endogenous RNA targets of individual SR proteins, map the preferential sites of binding, compare binding pattern and binding motifs between family members and to NXF1 and quantify binding of SR proteins and NXF1 to spliced versus unspliced RNAs to study the role of SR proteins in mRNA export via NXF1.
Project description:Mammalian SR proteins are a family of reversibly phosphorylated RNA binding proteins primarily studied for their roles in alternative splicing. While budding yeast lack alternative splicing, they do have three SR-like proteins: Npl3, Gbp2, and Hrb1. However, these have been primarily studied for their roles in mRNA export, leaving their potential roles in splicing largely unexplored. Here we combined high-density genetic interaction profiling and genome-wide splicing-sensitive microarray analysis to demonstrate that a single SR-like protein, Npl3, is required for efficient splicing of a large set of pre-mRNAs in Saccharomyces cerevisiae. We tested the hypothesis that Npl3 promotes splicing by facilitating co-transcriptional recruitment of splicing factors. Using chromatin immunoprecipitation, we showed that mutation of NPL3 reduces the occupancy of U1 and U2 snRNPs at Npl3-stimulated genes. This provides the first evidence that an SR protein can promote recruitment of splicing factors to chromatin. Splicing-specific microarrays were used to assay changes to splicing in single and double deletion mutants of non-essential SR proteins, in a deletion mutant of a non-essential component of the nonsense-mediated decay pathway, and in a double deletion mutant of in an SR protein plus a non-sense mediated decay factor in Saccharomyces cerevisiae. The data includes both samples obtained at the permissive temperature and also shifts to the non-permissive temperature for some mutants, as well as dye-flipped technical replicates.
Project description:small RNA fractions were treated with either p19-WT or T111BpyAla to evaluate the catalytic ability of p19-T111BpyAla compared to the WT protein in degrading miRNAs
Project description:Mammalian SR proteins are a family of reversibly phosphorylated RNA binding proteins primarily studied for their roles in alternative splicing. While budding yeast lack alternative splicing, they do have three SR-like proteins: Npl3, Gbp2, and Hrb1. However, these have been primarily studied for their roles in mRNA export, leaving their potential roles in splicing largely unexplored. Here we combined high-density genetic interaction profiling and genome-wide splicing-sensitive microarray analysis to demonstrate that a single SR-like protein, Npl3, is required for efficient splicing of a large set of pre-mRNAs in Saccharomyces cerevisiae. We tested the hypothesis that Npl3 promotes splicing by facilitating co-transcriptional recruitment of splicing factors. Using chromatin immunoprecipitation, we showed that mutation of NPL3 reduces the occupancy of U1 and U2 snRNPs at Npl3-stimulated genes. This provides the first evidence that an SR protein can promote recruitment of splicing factors to chromatin.