Project description:Patients with BRAF-mutated colorectal cancer (BRAFV600E CRC) are currently treated by a combination of BRAF inhibitor and anti-EGFR antibody with or without MEK inhibitor. A fundamental problem in treating patients with BRAFV600E CRC is intrinsic and/or acquired resistance to this combination therapy. By screening 78 compounds, we identified tretinoin, a retinoid, as a compound that synergistically enhances the antiproliferative effect of a combination of BRAF inhibition and MEK inhibition with or without EGFR inhibition on BRAFV600E CRC cells. This synergistic effect was also exerted by other retinoids. Tretinoin, added to BRAF inhibitor and MEK inhibitor, upregulated PARP, BAK, and p-H2AX. When either RARα or RXRα was silenced, the increase in cleaved PARP expression by the addition of TRE to ENC/BIN or ENC/BIN/CET was canceled. Our results suggest that the mechanism of the synergistic antiproliferative effect involves modulation of the Bcl-2 family and the DNA damage response that affects apoptotic pathways, and this synergistic effect is induced by RARα- or RXRα-mediated apoptosis. Tretinoin also enhanced the antitumor effect of a combination of BRAF inhibitor and anti-EGFR antibody with or without MEK inhibitor in a BRAFV600E CRC xenograft mouse model. Our data provide a rationale for developing retinoids as a new combination agent to overcome resistance to the combination therapy for patients with BRAFV600E CRC.
Project description:Patients with BRAF-mutated colorectal cancer (BRAFV600E CRC) are currently treated by a combination of BRAF inhibitor and anti-EGFR antibody with or without MEK inhibitor. A fundamental problem in treating patients with BRAFV600E CRC is intrinsic and/or acquired resistance to this combination therapy. By screening 78 compounds, we identified tretinoin, a retinoid, as a compound that synergistically enhances the antiproliferative effect of a combination of BRAF inhibition and MEK inhibition with or without EGFR inhibition on BRAFV600E CRC cells. This synergistic effect was also exerted by other retinoids. Tretinoin, added to BRAF inhibitor and MEK inhibitor, upregulated PARP, BAK, and p-H2AX. When either RARα or RXRα was silenced, the increase in cleaved PARP expression by the addition of TRE to ENC/BIN or ENC/BIN/CET was canceled. Our results suggest that the mechanism of the synergistic antiproliferative effect involves modulation of the Bcl-2 family and the DNA damage response that affects apoptotic pathways, and this synergistic effect is induced by RARα- or RXRα-mediated apoptosis. Tretinoin also enhanced the antitumor effect of a combination of BRAF inhibitor and anti-EGFR antibody with or without MEK inhibitor in a BRAFV600E CRC xenograft mouse model. Our data provide a rationale for developing retinoids as a new combination agent to overcome resistance to the combination therapy for patients with BRAFV600E CRC.
Project description:We asked whether combining Notch and VEGF blockade would enhance suppression of tumor angiogenesis and growth, using the NGP neuroblastoma model. NGP tumors were engineered to express a Notch1 decoy construct (N1D), which restricts Notch signaling, and then treated with either the anti-VEGF antibody bevacizumab or vehicle. Combining Notch and VEGF blockade led to blood vessel regression, increasing endothelial cell apoptosis and disrupting pericyte coverage of endothelial cells. Combined Notch and VEGF blockade did not affect tumor weight, but did additively reduce tumor viability. Our results indicate that Notch and VEGF pathways play distinct but complementary roles in tumor angiogenesis, and show that concurrent blockade disrupts primary tumor vasculature and viability further than inhibition of either pathway alone. 6 neuroblastoma tumors were transfected with Notch1 decoy, 6 with Notch1 decoy and treated with bevacizumab, 6 tumors treated with bevacizumab, and 6 control tumors were profiled by human 133A 2.0 arrays
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:The programmed cell death protein 1 (PD-1) limits effector T-cell functions in peripheral tissues and its inhibition leads to clinical benefit in different cancers. To better understand how PD-1 blockade therapy modulates the tumor-host interactions, we evaluated three syngeneic murine tumor models, the BRAFV600E-driven YUMM1.1 and YUMM2.1 melanomas, and the carcinogen-induced murine colon adenocarcinoma MC38. The YUMM cell lines were established from mice with melanocyte-specific BRAFV600E mutation and PTEN loss (BRAFV600E/PTEN-/-). Administration of anti-PD-1 or anti-PD-L1 antibody therapy had strong antitumor activity against MC38 and YUMM2.1, but not YUMM1.1. There was no difference in PD-L1 expression between the three models at baseline or upon interferon stimulation. While mutational load was high in MC38, it was lower in both YUMM models. In YUMM2.1, the antitumor activity of PD-1 blockade had a critical requirement for both CD4 and CD8 T-cells, as well as CD28 and CD80/86 co-stimulation, with an increase in CD11c+CD11b+MHC-IIhigh dendritic cells and tumor associated macrophages in the tumors after PD-1 blockade. Compared to YUMM1.1, YUMM2.1 exhibited a more inflammatory profile by RNA sequencing analysis, with an increase in chemokine-trafficking gene expression levels related to immune cell recruitment and T-cell priming. In conclusion, response to PD-1 blockade therapy in tumor models requires CD4 and CD8 T cells, and co-stimulation mediated by dendritic cells and macrophages.