Project description:Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. The brown algae are also important because they are one of only a very small number of eukaryotic lineages that have evolved complex multicellularity. This work used whole genome tiling array approach to generate a comprehensive transcriptome map of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for the brown algae. Keywords: high-resolution tiling array, brown algae, ectocarpus
Project description:To investigate the transcriptional dynamics behind changes in bacterivorous behavior in prasinophycean green algae we measured feeding frequency under decreasing nutrient concentrations and collected RNA when significant differences were observed. We then performed differential expression analysis using data obtained from RNA-seq.
Project description:Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. The brown algae are also important because they are one of only a very small number of eukaryotic lineages that have evolved complex multicellularity. This work used whole genome tiling array approach to generate a comprehensive transcriptome map of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for the brown algae. Keywords: high-resolution tiling array, brown algae, ectocarpus The slides were hybridised with two, labelled samples: 1) a mixture of labelled cDNA corresponding to RNA samples from mature sporophytes and gametophytes and from immature sporophytes stressed either in high salt medium or by addition of hydrogen peroxide and 2) genomic DNA as a control.
Project description:Animal regeneration requires coordinated responses of many cell types throughout the animal body. In animals carrying endosymbionts, cells from the other species may also participate in regeneration, but how cellular responses are integrated across species is yet to be unraveled. Here, we study the acoel Convolutriloba longifissura, which hosts symbiotic Tetraselmis green algae and can regenerate entire bodies from small tissue fragments. We show that animal injury leads to a decline in the photosynthetic efficiency of the symbiotic algae and concurrently induces upregulation of a cohort of photosynthesis-related genes. A deeply conserved animal transcription factor, runt, is induced after injury and required for the acoel regeneration. Knockdown of runt also dampens algal transcriptional responses to the host injury, particularly in photosynthesis related pathways, and results in further reduction of photosynthetic efficiency post-injury. Our results suggest that the runt-dependent animal regeneration program coordinates wound responses across the symbiotic partners and regulates photosynthetic carbon assimilation in this metaorganism.
Project description:Chlamydomonas, a green algae, is known to respond to changes in light intensity by altering its protein expression. In low light conditions, Chlamydomonas increases the expression of photosynthetic genes and the proteins they encode, including the light-harvesting complexes and the reaction center proteins. This allows the algae to maximize its ability to capture light and perform photosynthesis efficiently. On the other hand, under high light conditions, Chlamydomonas reduces the expression of these photosynthetic genes to avoid photoinhibition and damage to the photosynthetic machinery. Instead, it increases the expression of stress response genes and the corresponding proteins, such as antioxidant enzymes, which protect the algae from the harmful effects of excess light. In addition, Chlamydomonas also modulates its expression of other genes and proteins, such as those involved in carbon and nitrogen metabolism, in response to changes in light intensity. This helps the algae to maintain a balance between energy production and utilization, ensuring its survival and growth under different light conditions. Overall, the ability of Chlamydomonas to modulate its protein expression in response to changes in light intensity is an important mechanism for adapting to its environment and ensuring its survival and growth.
Project description:Different high temperatures adversely affect crop and algal yields with various responses in photosynthetic cells. The list of genes required for thermotolerance remains elusive. Additionally, it is unclear how carbon source availability affects heat responses in plants and algae. We utilized the insertional, indexed, genome-saturating mutant library of the unicellular, eukaryotic green alga Chlamydomonas reinhardtii to perform genome-wide, quantitative, pooled screens under moderate (35oC) or acute (40oC) high temperatures with or without organic carbon sources. We identified heat-sensitive mutants based on quantitative growth rates and identified putative heat tolerance genes (HTGs). By triangulating HTGs with heat-induced transcripts or proteins in wildtype cultures and MapMan functional annotations, we present a high/medium-confidence list of 933 Chlamydomonas genes with putative roles in heat tolerance. Triangulated HTGs include those with known thermotolerance roles and novel genes with little or no functional annotation. About 50% of these high-confidence HTGs in Chlamydomonas have orthologs in green lineage organisms, including crop species. Arabidopsis thaliana mutants deficient in the ortholog of a high-confidence Chlamydomonas HTG were also heat sensitive. This work expands our knowledge of heat responses in photosynthetic cells and provides engineering targets to improve thermotolerance in algae and crops.
Project description:Nitrogen starvation is an efficient environmental pressure used to increase lipid accumulation and oil droplet formation in microalgal cells. Various studies focused on metabolic changes occurring in microalgae in nitrogen starvation conditions, but the mechanisms at the basis of these changes are not completely understood. Between microalgae, green algae, with more than 7000 species growing in a variety of habitats, have been frequently studied for energy purposes, but also as source of bioactive extracts/compounds. In this study, de novo transcriptome of the green algae Tetraselmis suecica has been performed in order to (1) deeply study its response to nitrogen starvation, (2) to look for enzymes with antioxidant capacity and for polyketide synthases (PKSs), (3) if present, to evaluate if nutrient starvation can influence their expression levels.