Project description:The deep marine subsurface is one of the largest unexplored biospheres on Earth, where members of the phylum Chloroflexi are abundant and globally distributed. However, the deep-sea Chloroflexi have remained elusive to cultivation, hampering a more thorough understanding of their metabolisms. In this work, we have successfully isolated a representative of the phylum Chloroflexi, designated strain ZRK33, from deep-sea cold seep sediments. Phylogenetic analyses based on 16S rRNA genes, genomes, RpoB and EF-tu proteins indicated that strain ZRK33 represents a novel class within the phylum Chloroflexi, designated Sulfochloroflexia. We present a detailed description of the phenotypic traits, complete genome sequence and central metabolisms of the novel strain ZRK33. Notably, sulfate and thiosulfate could significantly promote the growth of the new isolate, possibly through accelerating the hydrolysis and uptake of saccharides. Thus, this result reveals that strain ZRK33 may play a crucial part in sulfur cycling in the deep-sea environments. Moreover, the putative genes associated with assimilatory and dissimilatory sulfate reduction are broadly distributed in the genomes of 27 metagenome-assembled genomes (MAGs) from deep-sea cold seep and hydrothermal vents sediments. Together, we propose that the deep marine subsurface Chloroflexi play key roles in sulfur cycling for the first time. This may concomitantly suggest an unsuspected availability of sulfur-containing compounds to allow for the high abundance of Chloroflexi in the deep sea.
Project description:Biological carbon fixation is foundational to the biosphere. Most autotrophs are thought to possess one carbon fixation pathway. The hydrothermal vent tubeworm Riftia pachyptila’s chemoautotrophic symbionts, however, possess two functional pathways: the Calvin Benson-Bassham (CBB) and the reductive tricarboxylic acid (rTCA) cycles. Little is known about how Riftia’s symbionts and related organisms coordinate the functioning of these two pathways. Here we investigated net carbon fixation rates, transcriptional/metabolic responses, and transcriptional co-expression patterns of Riftia pachyptila’s endosymbionts by incubating tubeworms at environmental pressures, temperature, and geochemistry. Results showed that rTCA and CBB transcriptional patterns varied in response to different geochemical regimes and that each pathway is allied to specific metabolic processes, suggesting distinctive yet complementary roles in metabolic function. Net carbon fixation rates were also exemplary, and accordingly we propose that co-activity of CBB and rTCA may be an adaptation for maintaining high carbon fixation rates, conferring a fitness advantage in dynamic vent environments.