Project description:Many long noncoding transcripts are involved in cancer progression. Here, we utilized high-throughput microarray to compare the transcriptome alterations between the SNHG1 knockdown or control in HCT116 cell lines. Two independent siRNAs were designed against the SNHG1 cDNA sequence. Thus, we identified 302 genes which were expressionally changed. Moreover, Gene Ontology and pathway enrichment analysis revealed that several gene signature were significantly enriched, such as MAPK signaling pathway, growth factor activity and transcriptional corepresssor activity. Further, GSEA analysis suggested NF-kB signaling pathway, PI3K/Akt pathway were markedly associated with SNHG1-reuglated genes. The present study indicated that SNGH1 regulated both the local and distal genes in cancer progression.
Project description:Many long noncoding transcripts are involved in cancer progression. Here, we utilized high-throughput microarray to compare the transcriptome alterations between the SNHG1 overexpression or control in HCT116 cell lines. Two isoforms of SNHG1 (denoted as SNHG1S and SNHG1L in the present work) were separately cloned and stably expressed in HCT116 cells with the lentivector. Moreover, GSEA analysis revealed the significant associations between SNHG1-regulated genes and plethora of gene signatures or pathways, such as process of interferon response. Collectively,the present study indicated that SNHG1 regulated the distal genes in cancer progression.
Project description:1. Evaluate the diagnostic value of long noncoding RNA (CCAT1) expression by RT-PCR in peripheral blood in colorectal cancer patients versus normal healthy control personal.
2. Evaluate the clinical utility of detecting long noncoding RNA (CCAT1) expression in diagnosis of colorectal cancer patients & its relation to tumor staging.
3. Evaluate the clinical utility of detecting long noncoding RNA (CCAT1) expression in precancerous colorectal diseases.
4. Compare long noncoding RNA (CCAT1) expression with traditional marker; carcinoembryonic antigen (CEA) and Carbohydrate antigen 19-9 (CA19-9) in diagnosis of colorectal cancer.
Project description:Neuroblastoma (NB) is an embryonal tumor with various clinical presentations and behaviors. Several genomic alterations has been well-studied in NB, among which genomic amplification of MYCN oncogene, is a strong prognostic biomarker with worsens outcome. Long noncoding RNAs (lncRNAs), constitute major proportion of the cellular transcripts with no coding capacity. One of their function is to guide transcription factors to the target genes and facilitate gene expression. However, relative contribution of lncRNA and MYCN to the advanced NB has remained unclear. Herein, by applying a network-based integrative analysis on MYCN amplified and MYCN nonamplified lncRNA expression profile from both RNA-seq and microarray platform, we identified lncRNA, SNHG1 to be differentially expressed and strongly correlated with MYCN in MYCN-amplified NB. The expression of SNHG1 was validated by RT-qPCR in NB cell lines. Survival analysis revealed that higher expression of SNHG1 significantly associates with poor patient survival. Moreover, knockdown of MYCN in MYCN-amplified NB cell lines inhibited SNHG1 expression. Furthermore, to unravel the role of SNHG1 in NB, we extracted SNHG1-interacting proteins by RNA-protein pull down assay coupled with doi:10.6342/NTU201701980 ! ! VI liquid chromatography-tandem mass spectrometry (LC-MS/MS). We identified 27 SNHG1-interacting proteins in common from three NB cell lines. However, only three SNHG1-interacting proteins, MATR3, YBX1 and HHRNPL have binding site detected by DeepBind motif analysis. Western blot confirms interaction of MATR3 with SNHG1. Additionally, we further validated the direct interaction between MATR3 and SNHG1 by RNA-immunoprecipation (IP). MATR3 is known to be involved in RNA transport and stabilization. Therefore, we proposed that MATR3 after interacting with SNHG1 might help in SNHG1 transcription and stabilization. In conclusion, our study unveils that SNHG1 could be a prognostic marker for high-risk NB and possibly stabilized by MATR3. Our results might provide future directions for the development of therapeutic strategies against high-risk NB.
Project description:Many intergenic long noncoding RNA (lncRNA) loci regulate the expression of adjacent protein coding genes. Less clear is whether intergenic lncRNAs commonly regulate transcription by modulating chromatin at genomically distant loci. Here, we report both genomically local and distal RNA-dependent roles of Dali, a conserved central nervous system expressed intergenic lncRNA. Dali is transcribed downstream of the Pou3f3 transcription factor gene and its depletion disrupts the differentiation of neuroblastoma cells. Locally, Dali transcript regulates transcription of the Pou3f3 locus. Distally, it preferentially targets active promoters and regulates expression of neural differentiation genes, in part through physical association with the POU3F3 protein. Dali interacts with the DNMT1 DNA methyltransferase in mouse and human and regulates DNA methylation status of CpG island-associated promoters in trans. These results demonstrate, for the first time, that a single intergenic lncRNA controls the activity and methylation of genomically distal regulatory elements to modulate large-scale transcriptional programmes. N2A cells transfected with a non-targeting control vector were compared to N2A cells transfected with a Dali knockdown construct. Three biological replicates of each condition were analysed on Affymetrix GeneChip Mouse Gene 1.0 ST Arrays.