ABSTRACT: Genome Profiling of Two Black Poplar (Populus nigra L.) Genotypes Differentially Adapted To Drought Stress Indicated Adaptation-Specific Transcripts
Project description:Drought is one of the most important environmental fluctuations affecting tree growth and survival. Therefore, understanding of physiological and transcriptomic responses of trees to this stress factor will make important contributions to forest health and productivity. Here, we report comparative physiological and microarray based transcriptome analysis between drought resistant (N.62.191) and drought-sensitive (N.03.368.A) black poplar genotypes under well-watered (WWP), moderate drought (MD), severe drought (SD) and post drought re-watering (PDR) conditions. In the study, sensitive genotype exhibited a drought escape strategy with lower leaf water potential, higher reactive oxygen production, complete leaf abscission and subsequent terminal shoot necrosis under drought stress. On the other hand, resistant genotype had a dehydration tolerance indicating highly delayed leaf abscission under drought and fast growing capacity during re-watering conditions. Gene ontology enrichment analysis attributed drought susceptibility of black poplar to significant up-regulation of genes functional in transcription regulation (AP2/ERF, NAC and WRKY), cell wall modification (Expansins), fatty acid metabolism (enoyl-ACP reductase, lipid transport protein particle), protein degradation (endopeptidases), ethylene synthesis (1-aminocyclopropane-1-carboxylate) and riboflavin synthesis (GTP cyclohydrolase II) under drought stress. Transcriptomic comparison indicated significant down-regulation of photosynthesis, electron transport and carbohydrate metabolism related genes under drought stress in sensitive genotype. Although, similar reduction in carbohydrate metabolism was also recorded for resistant genotype, genes related with photosynthesis and electron transport systems were not down regulated even under SD for this genotype. Resistant genotype specific up-regulation of small heat shock proteins (sHSP) and bark storage proteins revealed importance of protein protection and nitrogen remobilization under drought stress, respectively. This is the first study associating BSP production to delayed leaf abscission and drought tolerance in trees. For Microarray experiment total RNA was isolated from the leaves randomly selected from two balck poplar seedlings (two biological replicates) for resistant and sensitive genotypes at well watered period (WWP), moderate drought (MD), severe drought (SD) and post drought rewatering (PDR) periods. For each water availability regime total isolated RNA was loaded onto two Affymetrix poplar Gene Chips for each genotype. Totally 16 Affymetrix poplar GeneChips (2 genotypes × 4 water availability regimes × 2 biological replicates) were used for transcriptional analysis.
Project description:Drought is one of the most important environmental fluctuations affecting tree growth and survival. Therefore, understanding of physiological and transcriptomic responses of trees to this stress factor will make important contributions to forest health and productivity. Here, we report comparative physiological and microarray based transcriptome analysis between drought resistant (N.62.191) and drought-sensitive (N.03.368.A) black poplar genotypes under well-watered (WWP), moderate drought (MD), severe drought (SD) and post drought re-watering (PDR) conditions. In the study, sensitive genotype exhibited a drought escape strategy with lower leaf water potential, higher reactive oxygen production, complete leaf abscission and subsequent terminal shoot necrosis under drought stress. On the other hand, resistant genotype had a dehydration tolerance indicating highly delayed leaf abscission under drought and fast growing capacity during re-watering conditions. Gene ontology enrichment analysis attributed drought susceptibility of black poplar to significant up-regulation of genes functional in transcription regulation (AP2/ERF, NAC and WRKY), cell wall modification (Expansins), fatty acid metabolism (enoyl-ACP reductase, lipid transport protein particle), protein degradation (endopeptidases), ethylene synthesis (1-aminocyclopropane-1-carboxylate) and riboflavin synthesis (GTP cyclohydrolase II) under drought stress. Transcriptomic comparison indicated significant down-regulation of photosynthesis, electron transport and carbohydrate metabolism related genes under drought stress in sensitive genotype. Although, similar reduction in carbohydrate metabolism was also recorded for resistant genotype, genes related with photosynthesis and electron transport systems were not down regulated even under SD for this genotype. Resistant genotype specific up-regulation of small heat shock proteins (sHSP) and bark storage proteins revealed importance of protein protection and nitrogen remobilization under drought stress, respectively. This is the first study associating BSP production to delayed leaf abscission and drought tolerance in trees.
Project description:Drought is one of the most important environmental fluctuations affecting tree growth and survival. Therefore, understanding of physiological and transcriptomic responses of trees to this stress factor will make important contributions to forest health and productivity. Here, we report comparative physiological and microarray based transcriptome analysis between drought resistant (N.62.191) and drought-sensitive (N.03.368.A) black poplar genotypes under well-watered (WWP), moderate drought (MD), severe drought (SD) and post drought re-watering (PDR) conditions. In the study, sensitive genotype exhibited a drought escape strategy with lower leaf water potential, higher reactive oxygen production, complete leaf abscission and subsequent terminal shoot necrosis under drought stress. On the other hand, resistant genotype had a dehydration tolerance indicating highly delayed leaf abscission under drought and fast growing capacity during re-watering conditions. Gene ontology enrichment analysis attributed drought susceptibility of black poplar to significant up-regulation of genes functional in transcription regulation (AP2/ERF, NAC and WRKY), cell wall modification (Expansins), fatty acid metabolism (enoyl-ACP reductase, lipid transport protein particle), protein degradation (endopeptidases), ethylene synthesis (1-aminocyclopropane-1-carboxylate) and riboflavin synthesis (GTP cyclohydrolase II) under drought stress. Transcriptomic comparison indicated significant down-regulation of photosynthesis, electron transport and carbohydrate metabolism related genes under drought stress in sensitive genotype. Although, similar reduction in carbohydrate metabolism was also recorded for resistant genotype, genes related with photosynthesis and electron transport systems were not down regulated even under SD for this genotype. Resistant genotype specific up-regulation of small heat shock proteins (sHSP) and bark storage proteins revealed importance of protein protection and nitrogen remobilization under drought stress, respectively. This is the first study associating BSP production to delayed leaf abscission and drought tolerance in trees.
Project description:As exposure to episodic drought can impinge significantly on forest health and the establishment of productive tree plantations, there is great interest in understanding the mechanisms of drought response in trees. The ecologically dominant and economically important genus Populus, with its sequenced genome, provides an ideal opportunity to examine transcriptome level changes in trees in response to a drought stimulus. The transcriptome level drought response of two commercially important hybrid Populus clones (P. deltoides · P. nigra, DN34, and P. nigra · P. maximowiczii, NM6) was characterized over a diurnal period using a 4 · 2 · 2 completely randomized factorial ANOVA experimental design (four time points, two genotypes, and two treatment conditions) using Affymetrix Poplar GeneChip microarrays. Notably, the specific genes that exhibited changes in transcript abundance in response to drought differed between the genotypes and/or the time of day that they exhibited their greatest differences. This study emphasizes the fact that it is not possible to draw simple, generalized conclusions about the drought response of the genus Populus on the basis of one species, nor on the basis of results collected at a single time point. The data derived from our studies provide insights into the variety of genetic mechanisms underpinning the Populus drought response, and provide candidates for future experiments aimed at understanding this response across this economically and ecologically important genus.
Project description:As exposure to episodic drought can impinge significantly on forest health and the establishment of productive tree plantations, there is great interest in understanding the mechanisms of drought response in trees. The ecologically dominant and economically important genus Populus, with its sequenced genome, provides an ideal opportunity to examine transcriptome level changes in trees in response to a drought stimulus. The transcriptome level drought response of two commercially important hybrid Populus clones (P. deltoides · P. nigra, DN34, and P. nigra · P. maximowiczii, NM6) was characterized over a diurnal period using a 4 · 2 · 2 completely randomized factorial ANOVA experimental design (four time points, two genotypes, and two treatment conditions) using Affymetrix Poplar GeneChip microarrays. Notably, the specific genes that exhibited changes in transcript abundance in response to drought differed between the genotypes and/or the time of day that they exhibited their greatest differences. This study emphasizes the fact that it is not possible to draw simple, generalized conclusions about the drought response of the genus Populus on the basis of one species, nor on the basis of results collected at a single time point. The data derived from our studies provide insights into the variety of genetic mechanisms underpinning the Populus drought response, and provide candidates for future experiments aimed at understanding this response across this economically and ecologically important genus. 48 arrays total. 2 genotypes (DN34, NM6), 4 time points (midnight, pre-dawn, mid-day, late day), 2 water regimes (well-watered, water-limited). 3 biological replicates per treatment.
Project description:jc2013_sybiopop_2014 Large genotype and population comparisons in populus nigra-Which genes affect biomass yield in poplar ?-Large genotype comparisons: 241 genotype from 11 populations. RNA was extracted from young differentiating xylem and cambium collected on 480 4-year-old trees trialed in a common garden experiment at INRA Orléans. The trees corresponded to corresponding to 2 replicates of 241 genotypes from 11 natural populations. After RNA quantification, the RNA from xylem and cambium from the same tree were pooled and subjected to high-throughput sequencing on an Illumina HiSeq2000 using 100 bp single-read indexing runs. All the samples were sequenced on one Illumina, yielding around 20 million of single-reads per sample.