Project description:Mueller2015 - Hepatocyte proliferation, T160
phosphorylation of CDK2
This model is described in the article:
T160-phosphorylated CDK2
defines threshold for HGF-dependent proliferation in primary
hepatocytes.
Mueller S, Huard J, Waldow K, Huang
X, D'Alessandro LA, Bohl S, Börner K, Grimm D, Klamt S,
Klingmüller U, Schilling M.
Mol. Syst. Biol. 2015; 11(3): 795
Abstract:
Liver regeneration is a tightly controlled process mainly
achieved by proliferation of usually quiescent hepatocytes. The
specific molecular mechanisms ensuring cell division only in
response to proliferative signals such as hepatocyte growth
factor (HGF) are not fully understood. Here, we combined
quantitative time-resolved analysis of primary mouse hepatocyte
proliferation at the single cell and at the population level
with mathematical modeling. We showed that numerous G1/S
transition components are activated upon hepatocyte isolation
whereas DNA replication only occurs upon additional HGF
stimulation. In response to HGF, Cyclin:CDK complex formation
was increased, p21 rather than p27 was regulated, and Rb
expression was enhanced. Quantification of protein levels at
the restriction point showed an excess of CDK2 over CDK4 and
limiting amounts of the transcription factor E2F-1. Analysis
with our mathematical model revealed that T160 phosphorylation
of CDK2 correlated best with growth factor-dependent
proliferation, which we validated experimentally on both the
population and the single cell level. In conclusion, we
identified CDK2 phosphorylation as a gate-keeping mechanism to
maintain hepatocyte quiescence in the absence of HGF.
This model is hosted on
BioModels Database
and identified by:
BIOMD0000000568.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Systematic analysis of time resolved transcriptional signature of the cross-talk between HGF and IL-6 refines the role of Cxcl10 in hepatocyte proliferation control
Project description:Liver regeneration is characterized by a scheduled sequence of inner and intra-cellular signaling events. It starts with an initial inflammatory phase, followed by a period of rapidly proliferating hepatocytes and stopping abruptly when the liver mass is restored. The cytokines hepatocellular growth factor (HGF) and interleukin 6 (IL-6) play a pivotal role during this process with the former driving proliferation that is enhanced by the latter. While the individual importance of HGF and IL6 has been studied comprahensively the role of cross-talk in control of hepatic proliferation is jet largely unknown. To this end, we performed time-resolved transcriptional profiling of of murine hepatocytes stimulated with HGF and IL-6 indiviually as well as in combination. Thorough systematic investigation performing statistical analysis, mathematical formalization of cross-talk effects on the transcriptional level as well as gene-regulatory network inference revealed the transcriptional program of the cross-talk initiated by HGF and IL-6. Using the proliferation associated Hepcidin (Hamp) and Amphiregulin (Areg) as marker genes for liver regeneration we perform exthensive in-silico experiments with the inferred gene-regulatory network for the identification of the most important players in regulation of the proliferation process. Among other genes, this predicted chemokine (C-X-C motif) ligand 10 (Cxcl10) as an important factor in the temporal regulation of proliferation. These predictions were validated by independent in vitro expression data as well as independent in vivo literature data. While Cxcl10 is known to be involved in liver regeneration, our study extend its role towards its temporal orchestration. Cells were stimulated with either 40 ng/ml rmHGF (all R&D Systems) or 40 ng/ml rhIL-6 alone or in combination. Cells were left untreated as unstimulated control. RNA from three biological triplicates was extracted at 0, 0.5, 2, 4, 8, 16, 24 and 32 hours after stimulation using the RNeasy Mini Plus Kit (Qiagen, Hilden, Germany).
Project description:Liver regeneration is characterized by a scheduled sequence of inner and intra-cellular signaling events. It starts with an initial inflammatory phase, followed by a period of rapidly proliferating hepatocytes and stopping abruptly when the liver mass is restored. The cytokines hepatocellular growth factor (HGF) and interleukin 6 (IL-6) play a pivotal role during this process with the former driving proliferation that is enhanced by the latter. While the individual importance of HGF and IL6 has been studied comprahensively the role of cross-talk in control of hepatic proliferation is jet largely unknown. To this end, we performed time-resolved transcriptional profiling of of murine hepatocytes stimulated with HGF and IL-6 indiviually as well as in combination. Thorough systematic investigation performing statistical analysis, mathematical formalization of cross-talk effects on the transcriptional level as well as gene-regulatory network inference revealed the transcriptional program of the cross-talk initiated by HGF and IL-6. Using the proliferation associated Hepcidin (Hamp) and Amphiregulin (Areg) as marker genes for liver regeneration we perform exthensive in-silico experiments with the inferred gene-regulatory network for the identification of the most important players in regulation of the proliferation process. Among other genes, this predicted chemokine (C-X-C motif) ligand 10 (Cxcl10) as an important factor in the temporal regulation of proliferation. These predictions were validated by independent in vitro expression data as well as independent in vivo literature data. While Cxcl10 is known to be involved in liver regeneration, our study extend its role towards its temporal orchestration. Cells were stimulated with either 40 ng/ml rmHGF (all R&D Systems) and 40 ng/ml rhIL-6 alone or in combination. Cells were left untreated as unstimulated control. RNA was extracted at 1,2,3,4,5,6,7,8,9,10,12,24 hours. Cells were treated with IL6 alone for the first 4 hours and then additionally with HGF from hours 4-24. Controls were taken at -5,0,4,8,12,24 hours.
Project description:Liver regeneration is characterized by a scheduled sequence of inner and intra-cellular signaling events. It starts with an initial inflammatory phase, followed by a period of rapidly proliferating hepatocytes and stopping abruptly when the liver mass is restored. The cytokines hepatocellular growth factor (HGF) and interleukin 6 (IL-6) play a pivotal role during this process with the former driving proliferation that is enhanced by the latter. While the individual importance of HGF and IL6 has been studied comprahensively the role of cross-talk in control of hepatic proliferation is jet largely unknown. To this end, we performed time-resolved transcriptional profiling of of murine hepatocytes stimulated with HGF and IL-6 indiviually as well as in combination. Thorough systematic investigation performing statistical analysis, mathematical formalization of cross-talk effects on the transcriptional level as well as gene-regulatory network inference revealed the transcriptional program of the cross-talk initiated by HGF and IL-6. Using the proliferation associated Hepcidin (Hamp) and Amphiregulin (Areg) as marker genes for liver regeneration we perform exthensive in-silico experiments with the inferred gene-regulatory network for the identification of the most important players in regulation of the proliferation process. Among other genes, this predicted chemokine (C-X-C motif) ligand 10 (Cxcl10) as an important factor in the temporal regulation of proliferation. These predictions were validated by independent in vitro expression data as well as independent in vivo literature data. While Cxcl10 is known to be involved in liver regeneration, our study extend its role towards its temporal orchestration.
Project description:Liver regeneration is characterized by a scheduled sequence of inner and intra-cellular signaling events. It starts with an initial inflammatory phase, followed by a period of rapidly proliferating hepatocytes and stopping abruptly when the liver mass is restored. The cytokines hepatocellular growth factor (HGF) and interleukin 6 (IL-6) play a pivotal role during this process with the former driving proliferation that is enhanced by the latter. While the individual importance of HGF and IL6 has been studied comprahensively the role of cross-talk in control of hepatic proliferation is jet largely unknown. To this end, we performed time-resolved transcriptional profiling of of murine hepatocytes stimulated with HGF and IL-6 indiviually as well as in combination. Thorough systematic investigation performing statistical analysis, mathematical formalization of cross-talk effects on the transcriptional level as well as gene-regulatory network inference revealed the transcriptional program of the cross-talk initiated by HGF and IL-6. Using the proliferation associated Hepcidin (Hamp) and Amphiregulin (Areg) as marker genes for liver regeneration we perform exthensive in-silico experiments with the inferred gene-regulatory network for the identification of the most important players in regulation of the proliferation process. Among other genes, this predicted chemokine (C-X-C motif) ligand 10 (Cxcl10) as an important factor in the temporal regulation of proliferation. These predictions were validated by independent in vitro expression data as well as independent in vivo literature data. While Cxcl10 is known to be involved in liver regeneration, our study extend its role towards its temporal orchestration.
Project description:During embryogenesis, Hepatocyte Growth Factor (HGF) elicits a distinctive morphogenetic program, the invasive growth, by the activation of MET, whose aberrant activation in cancer drives metastatic progression. Aim of this work is to define and characterize the transcriptional signature of invasive growth, and to verify its activation in human cancers. Global expression profiling was carried out on mouse liver stem/progenitor cells (MLP-29) stimulated for different times, one, six and twenty-four hours, in vitro with HGF to define the invasive growth signature. Meta-analysis of human cancer microarray data was carried out to dissect the transcriptional modules of the invasive growth that are aberrantly activated during carcinogenesis of hepatocellular carcinoma. Differential expression analysis identified 2643 regulated genes by HGF, the invasive growth signature, subdivided in 11 gene expression clusters revealing waves of time coded transcriptional regulation. Those waves have been in-silico associated with the regulative role of the transcriptional unit of Rela/Nfkbia and Fos/Jun and biological features recapitulating the physiological invasive growth phenotype observed in cell line, such as cell motility and scattering, cellular proliferation and protection from apoptosis, cytoskeletal rearangement. Genomic meta-analysis on hepatocellular carcinoma identified of a core genes set (323 gene symbols), consistently regulated between MLP-29 and human tumors and significantly associated with cancer aggressiveness and metastasis p.val < 1*10-6, HR=5.404 CI= 2.570-11.365. The invasive growth signature recapitulates the physiopatological program driven by the stimulation of HGF in normal embryonic liver cells and its activity is observed in HCC as well as in several other tumors. This signature is associated with neoplastic progression and reliably predicts human HCC disease outcome, suggesting the involvement of the invasive growth and cancer in cancer progression. These results prompt the future application of anti-met target therapies in HCC and the application of the signature for both prognostic and predictive purposes.
Project description:The HGF/c-Met system is an essential inducer of hepatocyte growth and proliferation. Although a fundamental role for the HGF receptor c-Met has been demonstrated in acute liver regeneration its cell specific role in hepatocytes during chronic liver injury and fibrosis progression has not been determined yet. In order to better characterize the role of c-Met in hepatocytes we generated a hepatocyte-specific c-Met knockout mouse (c-MetM-bM-^HM-^Fhepa) using the Cre-loxP system and studied its relevance after bile-duct ligation. Two strategies for c-Met deletion in hepatocytes were tested. Early deletion during embryonic development was lethal, while post-natal Cre-expression was successful leading to the generation of viable c-MetM-bM-^HM-^Fhepa mice. Bile-duct ligation in these mice resulted in extensive necrosis and lower proliferation rates of hepatocytes. Gene array analysis of c-MetM-bM-^HM-^Fhepa mice revealed a significant reduction of anti-apoptotic genes in c-Met deleted hepatocytes. These findings could be functionally tested as c-MetM-bM-^HM-^Fhepa mice showed a stronger apoptotic response after bile-duct ligation and Jo-2 stimulation. This phenotype was associated with increased expression of pro-inflammatory cytokines (TNF-a and IL-6) and an enhanced recruitment of neutrophils. Activation of these mechanisms triggered a stronger pro-fibrogenic response as evidenced by increased TGF-b1, a-SMA, collagen-1a mRNA expression and enhanced collagen-fiber staining in c-MetM-bM-^HM-^Fhepa mice. For gene array analysis c-MetDhepa and c-MetloxP/loxP controls were stimulated for 2 hours with 2M-BM-5g recombinant mouse HGF.Three animals per group were treated in parallel, before and after i.p. injection of recombinant HGF or NaCl.
Project description:DU145 prostate cancer cells were treated with 25 ng/ml hepatocyte growth factor (HGF) or vehicle for 2, 8, or 24 hours. HGF stimulates the cMET protein, a tyrosine kinase transmembrane protein. The aim of this study is to determine the role of the HGF/cMET pathway in immature cells of established prostate cancer. HGF stimulation of DU145 prostate cancer cell line led to cell migration in culture, formation of sprouts in Matrigel and inhibition of growth. These biological effects went together with induction of a stem-like phenotype as defined by up-regulation of CD49b, CD49f, CD44 and SOX9, and down-regulation of CD24 on gene-expression arrays and quantitative PCR. The shift towards a stem-like phenotype was reflected by protein modifications on FACS, Western blot, and enhanced rapid adhesion to collagen I. Small molecules SU11274 and PHA665752 were able to inhibit both morphologic and molecular HGF effects. DU145 cells were stimulated for 2, 8 and 24 hours with 25 ng/ml HGF or vehicle. For each time point two arrays analyses were performed. One for cells stimulated with a vehicle and one for the HGF stimulated cells. Six arrays were performed in total in this study.
Project description:Cultured Madin-Darby canine kidney (MDCK) cells treated with hepatocyte growth factor (HGF) for 0, 3 and 24 hours. Each time point in triplicate. Keywords: time-course