Project description:High-throughput sequencing of Arabidopsis thaliana endogenous small RNAs by 454 pyrosequencing. Keywords: high-throughput sequencing
Project description:Deep sequencing of the 5' ends of uncapped, polyA-enriched mRNA from two biological replicate samples from Arabidopsis thaliana inflorescences, as well as two biological replicates of Arabidopsis lyrata inflorescences. These data were used to experimentally identify sliced microRNA targets from the two species.
Project description:Arabidopsis thaliana is a well-established model system for the analysis of the basic physiological and metabolic pathways of plants. The presented model is a new semi-quantitative mathematical model of the metabolism of Arabidopsis thaliana. The Petri net formalism was used to express the complex reaction system in a mathematically unique manner. To verify the model for correctness and consistency concepts of network decomposition and network reduction such as transition invariants, common transition pairs, and invariant transition pairs were applied. Based on recent knowledge from literature, including the Calvin cycle, glycolysis and citric acid cycle, glyoxylate cycle, urea cycle, sucrose synthesis, and the starch metabolism, the core metabolism of Arabidopsis thaliana was formulated. Each reaction (transition) is experimentally proven. The complete Petri net model consists of 134 metabolites, represented by places, and 243 reactions, represented by transitions. Places and transitions are connected via 572 edges.
Project description:Here we use bisulfite conversion of RNA combined with high-throughput IIlumina sequencing (RBS-seq) to identify single-nucleotide resolution of m5C sites in ribosomal RNAs of all three sub-cellular transcriptomes in Arabidopsis thaliana. m5C sites in rRNAs were also anlyzed in Arabidopsis T-DNA knockouts for the RNA methyltransferases TRM4A, TRM4B, TRDMT1, NSUN5, NOP2A, NOP2B and NOP2C.
Project description:Small RNA diversity and function has been widely characterized in various tissues of the sporophytic generation of the angiosperm model Arabidopsis thaliana. In contrast, there is limited knowledge about small RNA diversity and their roles in developing male gametophytes. We thus carried out small RNA sequencing on RNA isolated from four stages of developing Arabidopsis thaliana pollen.
Project description:The goal of this project is to compare the primary metabolite profile in different tissue types of the model plant Arabidopsis thaliana. Specifically, plants were grown hydroponically under the long-day (16hr light/day) condition at 21C. Tissue samples, including leaves, inflorescences, and roots were harvest 4 1/2 weeks post sowing. Untargeted primary metabolites profiling was carried out using GCTOF.