Project description:The cuticle, a protective cuticular barrier present in almost all primary aerial plant organs, has a composition that varies between plant species. As a part of the apple peel, cuticle and epicuticular waxes have an important role in the skin appearance and quality characteristic in fresh fruits destined for human consumption. The specific composition and structural characteristics of cutin from two apple varieties, "golden delicious" and "red delicious", were obtained by enzymatic protocols and studied by means of cross polarization magic angle spinning nuclear magnetic resonance (CP-MAS 13C NMR), attenuated total reflection infrared spectroscopy (ATR-FTIR), and mass spectrometry, and were morphologically characterized by specialized microscopy techniques (atomic force microscopy (AFM), confocal laser scanning microscopy (CLMS), and scanning electron microscopy (SEM)). According to CP-MAS 13C NMR and ATR-FTIR analysis, cutins from both varieties are mainly composed of aliphatics and a small difference is shown between them. This was corroborated from the hydrolyzed cutins analysis by mass spectrometry, where 9,10,18-trihydroxy-octadecanoic acid; 10,20-Dihydroxy-icosanoic acid; 10,16-dihydroxy hexadecenoic acid (10,16-DHPA); 9,10-epoxy-12-octadecenoic acid; and 9,10-epoxy-18-hydroxy-12-octadecenoic acid were the main monomers isolated. The low presence of polysaccharides and phenolics in the cutins obtained could be related to the low elastic behavior of this biocomposite and the presence of cracks in the apple cutin's surface. These cracks have an average depth of 1.57 µm ± 0.57 in the golden apple, and 1.77 µm ± 0.64 in those found in the red apple. The results obtained in this work may facilitate a better understanding that mechanical properties of the apple fruit skin are mainly related to the specific aliphatic composition of cutin and help to much better investigate the formation of microcracks, an important symptom of russet formation.
Project description:Apple leaf spot caused by the Alternaria alternata f. sp. mali (ALT1) fungus is one of the most devastating diseases of apple (Malus × domestica). We identified a hairpin RNA (hpRNA)-mediated small RNAs, MdhpRNA277, from apple (cv. ‘Golden Delicious’) that is induced by infection with ALT1. MdhpRNA277 produces mdm-siR277-1 and mdm-siR277-2, which target five R genes, MdRNL1, MdRNL2, MdRNL3, MdRNL4, and MdRNL5, that are expressed at high levels in the resistant apple variety ‘Hanfu’ and at low levels in the susceptible variety ‘Golden Delicious’ following ALT1 infection. MdhpRNA277 is strongly induced in ‘Golden Delicious’ but was not induced in ‘Hanfu’ following ALT1 inoculation. The promoter activity of MdhpRNA277 was much stronger in ‘Golden Delicious’ than in ‘Hanfu’ after ALT1 inoculation. We identified a single nucleotide polymorphism (SNP) in the MdhpRNA277 promoter region between the susceptible variety ‘Golden Delicious’ (pMdhpRNA277-GD) and resistant variety ‘Hanfu’ (pMdhpRNA277-HF). The transcription factor MdWHy binds to pMdhpRNA277-GD, but not to pMdhpRNA277-HF. Transgenic ‘GL-3’ apple lines expressing pMdhpRNA277-GD: MdhpRNA277 were more susceptible to ALT1 infection than were those expressing pMdhpRNA277-HF:MdhpRNA277 due to induced mdm-siR277 accumulation and low levels of expression of the five target R genes. The failure of MdWHy to bind to pMdhpRNA277-HF might contribute to the low levels of MdhpRNA277 and mdm-siR277-1/-2 expression and the high levels of R gene expression and resistance to Alternaria leaf spot in resistant apple varieties. We confirmed that the SNP in pMdhpRNA277 is associated with Alternaria leaf spot resistance by analyzing the progeny of three additional crosses. The SNP identified in this study could be used as a marker to distinguish between apple varieties that are resistant or susceptible to Alternaria leaf spot.
Project description:Apple skin russeting naturally occurs in many varieties, particularly in 'Golden Delicious' and its pedigree, and is regarded as a non-invasive physiological disorder partly caused by excessive deposition of lignin. However, the understanding of its molecular mechanism is still limited. In this study, we used iTRAQ and RNA-seq to detect the changes in the expression levels of genes and proteins in three developmental stages of russeting formation, in russeted and non-russeted skin of 'Golden Delicious' apple. 2856 differentially expressed genes and 942 differentially expressed proteins in the comparison groups were detected at the transcript level and protein level, respectively. A correlation analysis of the transcriptomics and proteomics data revealed that four genes (MD03G1059200, MD08G1009200, MD17G1092400 and MD17G1225100) involved in lignin biosynthesis are significant changes during apple russeting formation. Additionally, 92 transcription factors, including 4 LIM transcription factors may be involved in apple russeting formation. Among them, one LIM transcription factor (MD15G1068200) was capable of binding to the PAL-box like (CCACTTGAGTAC) element, which indicated it was potentially involved in lignin biosynthesis. This study will provide further views on the molecular mechanisms controlling apple russeting formation.