Project description:We report that long noncoding RNAs contribute to transcription and developmental process. Thousands of lncRNAs have been identified in the whole genome, and tend to located closely to protein-coding genes. To study position relationship between lncRNA and protein-coding genes, we classified all of lncRNA to several subgroups based on the genome position with their coding neighbors. XH, the head to head subgroup is associated with transcription and development in GO analysis. Here, we knockdown serveral XH lncRNA by shRNA in embryonic stem cells and induce nondirectional differnetiation by removing LIF or neural differnetiation by RA. Knockdown of XH lncRNAs led to uniform downregulation of nearby coding genes, and form regulatory circuits with its nearby coding genes to fine-tune embryonic lineage development. In addition, we also knockout one lncRNA-Evx1as and its nearby protein-coding gene-EVX1 by CRISPR, and get similar results as knockdown.We propose that XH lncRNA may function primarily as 'cis-regulators' of the expression of nearby protein-coding genes, and tend to participate in transcriptional or development regulations as their coding neighbors. All RNA-seq(s) were designed to reveal the differentially expressed genes between wild-type and XH lncRNA knockdown/knockout ESCs during differentiation.
Project description:We report that long noncoding RNAs contribute to transcription and developmental process. Thousands of lncRNAs have been identified in the whole genome, and tend to located closely to protein-coding genes. To study position relationship between lncRNA and protein-coding genes, we classified all of lncRNA to several subgroups based on the genome position with their coding neighbors. XH, the head to head subgroup is associated with transcription and development in GO analysis. Here, we knockdown serveral XH lncRNA by shRNA in embryonic stem cells and induce nondirectional differnetiation by removing LIF or neural differnetiation by RA. Knockdown of XH lncRNAs led to uniform downregulation of nearby coding genes, and form regulatory circuits with its nearby coding genes to fine-tune embryonic lineage development. In addition, we also knockout one lncRNA-Evx1as and its nearby protein-coding gene-EVX1 by CRISPR, and get similar results as knockdown.We propose that XH lncRNA may function primarily as 'cis-regulators' of the expression of nearby protein-coding genes, and tend to participate in transcriptional or development regulations as their coding neighbors.
Project description:Capture-C using probes at the Cdkn1b promoter and the Lockd promoter Many long non-coding (lnc) RNAs are reported to regulate gene expression and protein functions. However, the proportion of lncRNAs with biological activities among the thousands expressed in mammalian cells is controversial. We studied Lockd (LncRNA downstream of Cdkn1b), a 434 bp polyadenylated lncRNA originating 4 kb 3â to the Cdkn1b gene. Heterozygous and homozygous deletion of the 25 kb Lockd locus reduced Cdkn1b transcription by approximately 35 and 70% respectively in a mouse erythroid cell line. In contrast, homozygous insertion of a polyadenylation cassette 80 bp downstream of the Lockd transcription start site reduced the entire lncRNA transcript level by > 90%, but had no effect on Cdkn1b transcription. The promoter of the Lockd gene contains a DNase hypersensitive site, binds numerous transcription factors (TFs), and physically associates with the Cdkn1b promoter in chromosomal conformation capture (NG Capture-C) studies. Thus, the Lockd gene positively regulates Cdkn1b transcription through an enhancer-like cis element, while the lncRNA itself is dispensable. These findings demonstrate that the biological activities of a lncRNA cannot be inferred from phenotypes that arise after deleting the corresponding gene. Rather, the model of an inert transcript arising from a functional genomic cis element should be considered while investigating the biology of any lncRNA.
Project description:Age as the primary rise factor could be play an important role in incidence and development of osteoarthritis. A few studies have confirmed some tissue specific lncRNA were associated with development of osteoarthritis. But if age related lncRNA would be involved in pivotal post-transcriptional gene regulation in osteoarthritis is unclear. In view of this, we have an idea that several age-related lncRNA would be screened from the rat knee cartilage at different development ages by lncRNAs Microarray analysis. We used microarrays to detail the global programme of gene expression underlying the rat knee cartilage and identified distinct classes of age-related lncRNA during this process. The rat knee articular cartilage were selected at successive stages of the rat developmental for RNA extraction and hybridization on Affymetrix lncRNA arrays. We sought to obtain homogeneous populations of cartilage at each developmental stage in order to increase the temporal resolution of expression profiles. To that end, we hand-selected cartilage according to the rat developmental stages, i.e. seven time-points: newborn (T0), youth(T1), adult (T2), early-stage elderly(T3) and latter-stage elderly(T4).
Project description:Transcriptome analysis of effect of Lockd knockout on cells Many long non-coding (lnc) RNAs are reported to regulate gene expression and protein functions. However, the proportion of lncRNAs with biological activities among the thousands expressed in mammalian cells is controversial. We studied Lockd (Downstream of p27), a 434 bp polyadenylated lncRNA originating 4 kb 3â to the Cdkn1b gene. Heterozygous and homozygous deletion of the 25 kb Lockd locus reduced Cdkn1b transcription by approximately 35 and 70% respectively in a mouse erythroid cell line. In contrast, homozygous insertion of a polyadenylation cassette 80 bp downstream of the Lockd transcription start site reduced the entire lncRNA transcript level by > 90%, but had no effect on Cdkn1b transcription. The 5â region of the Lockd gene contains a DNase hypersensitive site, binds numerous transcription factors (TFs), and physically associates with the Cdkn1b promoter in chromosomal conformation capture (NG Capture-C) studies. Thus, the Lockd gene positively regulates Cdkn1b transcription through an enhancer-like cis element and not via the lncRNA transcript. These findings demonstrate that the biological functions of a lncRNA cannot be inferred simply from phenotypes that arise after deleting the corresponding genomic locus. We analyzed mouse G1E erythroid cell line clones with Control Lockd (C - 3 replicates) and with Lockd deletion with CRISPR (KO - 4 replicates) using Mouse Gene 2.0 ST Array platform (transcript version). Array data was processed by RMA algorithm.