Project description:We used a whole-genome microarray based on the sequenced strain Lactobacillus sakei 23K to study ribose catabolism in three Lactobacillus sakei strains by screening for differentially expressed genes when grown on ribose compared to glucose
Project description:Background. Food can affect the microbial balance in the human intestine, and the ingestion of probiotics may play a role in the current obesity pandemic. The objective of our study was to determine if increased Lactobacillus spp. in the intestinal microflora of mice can promote growth and if changes in the intestinal microflora are associated with modifications in metabolism. Methodology. Female BALBc mice were divided between one control and two experimental groups and inoculated either once or twice with 4×1010 Lactobacillus per animal in PBS or with PBS alone. Fecal samples were collected and tested using qPCR to detect and quantify Lactobacillus spp., Bacteroidetes and Firmicutes. Gene expression by microarray and RT-PCR was studied in liver and adipose tissue. Finally, metabolic parameters in the plasma were tested. Principal Findings. In three independent experiments, we observed an increase in both weight gain and liver weight in mice inoculated with 4×1010 Lactobacillus. Inoculation with Lactobacillus sp. (ostrich) increased the Lactobacillus spp. and Firmicutes DNA copy number in feces. The transcriptional profile of liver tissue from mice inoculated with Lactobacillus sp. (ostrich) was enriched for Gene Ontology terms related to the immune response and metabolic modifications. The mRNA levels of fatty acyl synthase (Fas), sterol regulatory element binding factor 1 (Srebp1c), tumor necrosis factor alpha (Tnf), cytochrome P450 2E1 (Cyp2e1) and 3-phosphoinositide-dependent protein kinase-1 (Pdpk1) were significantly elevated in liver tissue in experimental group animals. In gonadal adipose tissue, the expression of leptin, peroxisome proliferator-activated receptor gamma (Pparg and Srebp1c was significantly higher in experimental group animals, whereas the expression of adiponectin was significantly lower. Conclusions. Alterations in the intestinal microbiota resulted in increased weight gain. Furthermore, increased Lactobacillus spp. in the intestinal microflora of mice inoculated with Lactobacillus sp. (ostrich) resulted in accelerated weight gain, liver enlargement and metabolic changes in the plasma, liver and adipose tissue.
Project description:Lactobacillus (L.) curvatus and L. sakei contain strains, which are assertive in sausage fermentation. Previous work has demonstrated differences in assertiveness at strain level within one species, and revealed either exclusion of competitors by complementary partner strains or their inhibition by single strains. This work addresses interspecies differences in the assertiveness of L. curvatus and L. sakei. Strain sets of L. curvatus and L. sakei were employed as starters in a fermented sausage model and their abundancy upon fermentation was determined by strain-specific MALDI-TOF MS identification. Generally, single or groups of L. sakei strains outcompeted L. curvatus strains. In multiple growth tests employing mMRS and mMSM it could be shown that assertive L. sakei strains can be predicted along their µ max in mMSM. Still, L. curvatus TMW 1.624 could suppress all L. curvatus and most L. sakei strains in competitive settings. This could be referred to its expression of several bacteriocins, which are active against all of the L. curvatus strains. Strain specific differences could be demonstrated in the susceptibility of L. sakei to bacteriocins, and in oxidative stress tolerance, which is higher in co-existing L. sakei strains than in the bacteriocin producer. This suggests that tolerance to bacteriocins and oxidative stress represent additional determinants for assertiveness, above previously reported bacteriocin production versus metabolic complementarism of partner strains.
Project description:Background. Food can affect the microbial balance in the human intestine, and the ingestion of probiotics may play a role in the current obesity pandemic. The objective of our study was to determine if increased Lactobacillus spp. in the intestinal microflora of mice can promote growth and if changes in the intestinal microflora are associated with modifications in metabolism. Methodology. Female BALBc mice were divided between one control and two experimental groups and inoculated either once or twice with 4×1010 Lactobacillus per animal in PBS or with PBS alone. Fecal samples were collected and tested using qPCR to detect and quantify Lactobacillus spp., Bacteroidetes and Firmicutes. Gene expression by microarray and RT-PCR was studied in liver and adipose tissue. Finally, metabolic parameters in the plasma were tested. Principal Findings. In three independent experiments, we observed an increase in both weight gain and liver weight in mice inoculated with 4×1010 Lactobacillus. Inoculation with Lactobacillus sp. (ostrich) increased the Lactobacillus spp. and Firmicutes DNA copy number in feces. The transcriptional profile of liver tissue from mice inoculated with Lactobacillus sp. (ostrich) was enriched for Gene Ontology terms related to the immune response and metabolic modifications. The mRNA levels of fatty acyl synthase (Fas), sterol regulatory element binding factor 1 (Srebp1c), tumor necrosis factor alpha (Tnf), cytochrome P450 2E1 (Cyp2e1) and 3-phosphoinositide-dependent protein kinase-1 (Pdpk1) were significantly elevated in liver tissue in experimental group animals. In gonadal adipose tissue, the expression of leptin, peroxisome proliferator-activated receptor gamma (Pparg and Srebp1c was significantly higher in experimental group animals, whereas the expression of adiponectin was significantly lower. Conclusions. Alterations in the intestinal microbiota resulted in increased weight gain. Furthermore, increased Lactobacillus spp. in the intestinal microflora of mice inoculated with Lactobacillus sp. (ostrich) resulted in accelerated weight gain, liver enlargement and metabolic changes in the plasma, liver and adipose tissue. For microarray analysis, we used the livers from two LB1 and two control mice that had been euthanized 20 days after inoculation. We used a whole mouse genome oligomicroarray 4x44K kit (44,000 60-mer oligonucleotides) and performed a one-color microarray-based gene expression analysis, as previously described. Labeled RNAs (Low RNA Input Fluorescent Amplification Kit, Perkin Elmer) were deposited on slides and hybridized using an in situ Hybridization Plus Kit (Agilent Technologies) for 17 h. The arrays were scanned using a DNA Microarray Scanner G2505B (Agilent Technologies), and the image analysis and correction of intra-array signals were performed using Feature Extraction Software A.9.1.3 (Agilent Technologies). Microarray data analysis was performed using GeneSpring 10.01 with the default setting for inter-array normalization and inter-replicate corrections. To identify genes that were differentially expressed, we used a Student’s t-test with p<0.05, and an absolute fold change (FC) greater than 2.0 considered significant. An analysis of Gene Ontology (GO) terms was performed to identify any altered biological processes. Additional data analysis was performed using R software, version 2.8.1. RNA extraction and cDNA synthesis were performed as described above. Primers and probes to target the mouse genes for cytochrome P450 2E1 (Cyp2e1), 3-phosphoinositide-dependent protein kinase-1 (Pdpk1) and glyceraldehyde 3-phosphate dehydrogenase (Gapdh, used as a housekeeping gene) were purchased from Applied Biosystems. qPCR reactions were performed as described above. The relative amount of each examined mRNA was normalized to the Gapdh mRNA expression level and is expressed relative to the mean amount of the same mRNA in the control group.
Project description:Lactobacillus (L.) sakei belongs to the dominating lactic acid bacteria in indigenous meat fermentations, while diverse strains of this species have also been isolated from plant fermentations. We could recently show, that L. sakei TMW 1.411 produces a high molecular weight dextran from sucrose, indicating its potential use as a dextran forming starter culture. However, the general physiological response of L. sakei to sucrose as carbohydrate source has not been investigated yet, especially upon simultaneous dextran formation. To address this lack of knowledge, we sequenced the genome of L. sakei TMW 1.411 and performed a label-free, quantitative proteomics approach to investigate the sucrose-induced changes in the proteomic profile of this strain in comparison to its proteomic response to glucose. In total, 21 proteins were found to be differentially expressed at the applied significance criteria (FDR ≤ 0.01). Among these, 14 were associated with the carbohydrate metabolism including several enzymes, which enable sucrose and fructose uptake as well as their subsequent intracellular metabolization, respectively. The plasmid-encoded, extracellular dextransucrase of L. sakei TMW 1.411 was expressed at high levels irrespective of the present carbohydrate and was predominantly responsible for sucrose consumption in growth experiments using sucrose as sole carbohydrate source, while the released fructose from the dextransucrase reaction was more preferably taken up and intracellularly metabolized than sucrose. Genomic comparisons revealed, that operons coding for uptake and intracellular metabolism of sucrose and fructose are chromosomally conserved among L. sakei, while plasmid-located dextransucrase genes are present only in few strains. In accordance with these findings, all 59 different L. sakei strains of our strain collection were able to grow on sucrose as sole carbohydrate source, while eight of them exhibited a mucous phenotype on agar plates indicating dextran formation from sucrose. Our study therefore highlights the intrinsic adaption of L. sakei to plant environments, where sucrose is abundant, and provides fundamental knowledge regarding the use of L. sakei as starter culture for sucrose-based food fermentation processes with in-situ dextran formation.