Project description:This experiment has been annotated by TAIR (http://arabidopsis.org). In this experiment, different tissue preparations of wild type Columbia-0 Arabidopsis thaliana plants were hybridized and run on the ATH1 Affymetrix platform. Experimenter name = Chris Somerville Experimenter phone = 650-325-1521 ext203 Experimenter fax = 650-325-6857 Experimenter address = Plant Biology Experimenter address = Carnegie Institution Experimenter address = 260 Panama Street Experimenter address = Stanford Experimenter zip/postal_code = CA 94305-1297 Experimenter country = USA Keywords: organism_part_comparison_design;
Project description:In plants, apical meristems allow continuous growth along the body axis. Within the root apical meristem (RAM), a group of slowly dividing quiescent center (QC) cells is thought to limit stem cell activity to directly neighboring cells (Cowels, 1956; van den Berg et al., 1997), thus endowing them with unique properties, distinct from displaced daughters. This binary identity of the stem cells stands in apparent contradiction with the more gradual changes in cell division potential (Bennett and Scheres, 2010) and differentiation (Yamaguchi et al., 2008; 2010; Furuta et al, 2014; Geldner, 2013; Masucci et al., 1996; Dolan and Costa, 2001) that occur as cells move further away from the QC. To address this paradox and to infer molecular organization of the root meristem, we used a whole-genome approach to determine dominant transcriptional patterns along root ontogeny zones. We found that the prevalent patterns are expressed in two opposing gradients. One is characterized by genes associated with development, the other enriched in differentiation genes. We confirmed these transcript gradients, and demonstrate that these translate to gradients in protein accumulation and gradual changes in cellular properties. We also show that gradients are genetically controlled through multiple pathways. Based on these findings, we propose that cells in the Arabidopsis root meristem gradually transition from ‘stemness’ towards differentiation.
Project description:The recent release of a large number of genomes from ectomycorrhizal, orchid mycorrhizal and root endophytic fungi have provided deep insight into fungal lifestyle-associated genomic adaptation. Comparative analyses of symbiotic fungal taxa showed that similar outcomes of interactions in distant related root symbioses are examples of convergent evolution. The order Sebacinales represents a sister group to the Agaricomycetes (Basidiomycota) that is comprised of ectomycorrhizal, ericoid-, orchid- mycorrhizal, root endophytic fungi and saprotrophs (Oberwinkler et al., 2013). Sebacinoid taxa are widely distributed from arctic to temperate to tropical ecosystems and are among the most common and species-rich groups of ECM, OM and endophytic fungi (Tedersoo et al., 2012, Tedersoo et al., 2010, Oberwinkler et al., 2013). The root endophyte Piriformospora indica and the orchid mycorrhizal fungus S. vermifera (MAFF 305830) are non-obligate root symbionts which were shown to be able to interact with many different experimental hosts, including the non-mycorrhizal plant Arabidopsis thaliana. These two fungi display similar colonization strategies in barley and in Arabidopsis and the ability to establish beneficial interactions with different hosts (Deshmukh et al., 2006). Colonization of the roots by P. indica and S. vermifera results in enhanced seed germination and biomass production as well as increased resistance against biotic and abiotic stresses in its experimental hosts, including various members of the Brassicaceae family, barley, Nicotiana attenuata and switchgrass (Ghimire, 2011, Ghimire et al., 2009, Ghimire et al., 2011, Waller et al., 2008, Barazani et al., 2007, Deshmukh et al., 2006). Microarray experiments were performed to identify and characterize conserved sebacinoid genes as key determinants in the Sebacinales symbioses.
Project description:Genomic DNA from 187 wild type and 169 asy1 Col-0 x Ws-4 F2 individuals was extracted using CTAB and used to generate sequencing libraries as described (Lawrence et al, 2019 Current Biology). Sequencing data was analysed to identify crossovers using the TIGER pipeline as previously described (Rowan et al, 2015 G3 (Bethesda); Yelina et al, 2015 Genes & Dev; Lawrence et al, 2019 Current Biology).
Project description:Canonical auxin signalling starts with auxin binding to the receptor complex, followed by modulation of gene transcription and protein abundance (Tan et al., 2007; Chapman and Estelle, 2009; Slade et al., 2017). However, recent studies also showed an alternative mechanism in roots involving intra-cellular auxin perception, but not transcriptional reprogramming (Fendrych et al., 2018). Despite knowledge on effects of auxin on Arabidopsis root growth at the protein and phosphorylation level is increasing (Zhang et al., 2013; Mattei et al., 2013; Slade et al., 2017), it still remains incomplete. To address this gap in our knowledge, we explored the impact of auxin on the root tip proteome and phosphoproteome.
Project description:Aim: To determine the effect of an AtrbohC mutation on the gene expression pattern in primary root tissue, to identify candidate genes acting downstream of AtrbohC, particularly any encoding antioxidant-related proteins, signal transduction components or proteins known to be required for normal root-hair development. Background: Root-hairs are a model system for investigating plant cell polarity. The root-hair mutant rhd2 (Schiefelbein and Somerville, 1990. Plant Cell, 2:235) has short hairs that burst at their tips, (Jones and Smirnoff, unpublished). RHD2 has been cloned and is identical to AtrbohC (L. Dolan, pers. comm.), which encodes a homologue of the superoxide-generating neutrophil respiratory burst oxidase catalytic subunit gp91phox (Torres et al., 1998. Plant J., 14:365). Superoxide rapidly dismutates to hydrogen peroxide (H2O2), suggesting that the rhd2 phenotype may result from reduced H2O2 levels in root-hair cells. Low doses of exogenous antioxidants phenocopy the rhd2 root-hair phenotype in wild-type plants (Jones and Smirnoff, unpublished) further supporting a role for H2O2 in root-hair growth. Fluorescent dyes that detect H2O2 show distinct localisation patterns in growing root-hair cells, (Jones and Smirnoff, unpublished). H2O2 may be an important second messenger in plant cell signalling with proposed roles in the development of cotton fibres (Potikha et al., 1999. Plant Physiol., 119: 849) and in ABA-induced stomatal closure (Zhang et al., 2001. Plant Physiol., 126: 1438). In cultured Arabidopsis cells H2O2 induces gene expression, including that of a gp91phox homologue, (Desikan et al., 1998. J. Exp. Bot., 49: 1767; Desikan, et al., 2000. Free Rad. Biol. Med., 28: 773; Baxter-Burrell et al., 2002. Science, 296: 2026) and activates a MAP kinase cascade (Desikan et al., 1999. J. Exp Bot., 50: 1863). cDNA microarray technology has been used previously to examine the effects of H2O2 on gene expression during oxidative stress (Desikan et al., 2001. Plant Physiol., 127: 159). We wish to investigate the effects of H2O2 on gene expression during root development using the rhd2 mutant. We are currently determining the expression pattern of RHD2. By extracting RNA from the small region of the primary root (for wild-type and rhd2 plants grown in sterile conditions) where root hairs are growing we hope to enrich for root-hair RNAs. This may reveal candidate genes that could be examined more closely at the single-cell level. This approach will provide new insights into the role of H2O2 in root-hair development. Keywords: strain_or_line_design
Project description:Investigation of whole genome gene expression level changes in several Arabidopsis thaliana mutants (nrpd1, nrpe1, ros1 dml2 dml3) compared to wild-type Col-0. The mutants analyzed in this study are further described in Le et al. 'DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis' . Genome Biology (in press).