Project description:Efficacy and safety of anticancer drugs are traditionally studied using cancer cell lines and animal models. Recently, a potential anticancer agent, JQ1, an inhibitor of bromodomain and extra terminal (BET) protein, has been shown to promote apoptosis of cancerous cells by arresting them in G1 phase of the cell cycle. However, the effect of JQ1 on normal cells is poorly understood. In this study, we investigated the safety of JQ1 by using human umbilical cord mesenchymal stem cells (MSCs) as an in vitro model system. Our results indicated that JQ1 induced cell cycle arrest in G1 phase of MSCs, but did not promote apoptosis. Microarray analysis of MSCs treated with JQ1 indicated that it down-regulated genes involved not only in cell cycle regulation but also DNA replication, mitosis, and cell division. Although many studies have suggested the potential of JQ1 as an anticancer agent, our findings suggest that it caused a deleterious effect on normal cells and may not be safe for anticancer therapy. Human umbilical cord derived MSCs were cultured in vitro and treated with either 100 nM or 500 nM JQ1 for 24 hrs. Gene expression of treated cells was compared to untreated cultured cells.
Project description:Efficacy and safety of anticancer drugs are traditionally studied using cancer cell lines and animal models. Recently, a potential anticancer agent, JQ1, an inhibitor of bromodomain and extra terminal (BET) protein, has been shown to promote apoptosis of cancerous cells by arresting them in G1 phase of the cell cycle. However, the effect of JQ1 on normal cells is poorly understood. In this study, we investigated the safety of JQ1 by using human umbilical cord mesenchymal stem cells (MSCs) as an in vitro model system. Our results indicated that JQ1 induced cell cycle arrest in G1 phase of MSCs, but did not promote apoptosis. Microarray analysis of MSCs treated with JQ1 indicated that it down-regulated genes involved not only in cell cycle regulation but also DNA replication, mitosis, and cell division. Although many studies have suggested the potential of JQ1 as an anticancer agent, our findings suggest that it caused a deleterious effect on normal cells and may not be safe for anticancer therapy.
Project description:Bromodomain and extra terminal domain (BET) proteins are important epigenetic regulators facilitating the transcription of genes in chromatin areas linked to acetylated histones. JQ1, a BET protein inhibitor, has antiproliferative activity against many cancers, mainly through inhibition of c-MYC and upregulation of p21. In this research, we investigated the use of JQ1 for human osteosarcoma (OS) treatment. JQ1 significantly inhibited the proliferation and survival of OS cells inducing G1 cell cycle arrest, premature senescence, but little effect on apoptosis. Interestingly, c-MYC protein levels in JQ1-treated cells remained unchanged, whereas the upregulation of p21 protein was still observable. Although effective in vitro, JQ1 alone failed to reduce the size of the MNNG/HOS xenografts in immunocompromised mice. To overcome the resistance of OS cells to JQ1 treatment, we combined JQ1 with rapamycin, an mTOR inhibitor. JQ1 and rapamycin synergistically inhibited the growth and survival of OS cells in vitro and in vivo. We also identified that RUNX2 is a direct target of BRD4 inhibition by JQ1 in OS cells. Chromatin immunoprecipitation (ChIP) showed that enrichment of BRD4 protein around RUNX2 transcription start sites diminished with JQ1 treatment in MNNG/HOS cells. Overexpression of RUNX2 protected JQ1-sensitive OS cells from the effect of JQ1, and siRNA-mediated inhibition of RUNX2 sensitized the same cells to JQ1. In conclusion, our findings suggest that JQ1, in combination with rapamycin, is an effective chemotherapeutic option for OS treatment. We also show that inhibition of RUNX2 expression by JQ1 partly explains antiproliferative activity of JQ1 in OS cells. MNNG/HOS cells treated with 7.5mM JQ1, 12.5nM Rapamycin or both were used for RNA extraction and hybridization on Affymetrix microarrays. We compared these microarray samples with the corresponding control (treated with DMSO).
Project description:To determine the global transcriptome changes in mantle cell lymphoma cells following treatment with the BET bromodomain antagonist, JQ1 Mantle Cell Lymphoma (MCL) cells exhibit increased B cell receptor and NFkB activities. The BET protein BRD4 is essential for the transcriptional activity of NFkB. Here, we demonstrate that treatment with the BET protein bromodomain antagonist (BA) JQ1 attenuates MYC and CDK4/6, inhibits the nuclear RelA levels and the expression of NFκB target genes including Brutonâs Tyrosine Kinase (BTK) in MCL cells. While lowering the levels of the anti-apoptotic BCL2 family proteins, BA treatment induces the pro-apoptotic protein BIM and exerts dose-dependent lethality against cultured and primary MCL cells. Co-treatment with BA and the BTK inhibitor ibrutinib synergistically induces apoptosis of MCL cells. Compared to each agent alone, co-treatment with BA and ibrutinib markedly improved the median survival of mice engrafted with the MCL cells. BA treatment also induced apoptosis of the in vitro isolated, ibrutinib-resistant MCL cells which overexpress CDK6, BCL2, Bcl-xL, XIAP and AKT, but lack ibrutinib resistance-conferring BTK mutation. Co-treatment with BA and panobinostat (pan-histone deacetylase inhibitor) or palbociclib (CDK4/6 inhibitor) or ABT-199 (BCL2 antagonist) synergistically induced apoptosis of the ibrutinib-resistant MCL cells. These findings highlight and support further in vivo evaluation of the efficacy of the BA-based combinations with these agents against MCL, including ibrutinib-resistant MCL. MO2058 cells treated with vehicle, 250 nM or 1000 nM JQ1 for 8 hours. Samples were acquired and analyzed in duplicate.
Project description:Bromodomain and extra terminal domain (BET) proteins are important epigenetic regulators facilitating the transcription of genes in chromatin areas linked to acetylated histones. JQ1, a BET protein inhibitor, has antiproliferative activity against many cancers, mainly through inhibition of c-MYC and upregulation of p21. In this research, we investigated the use of JQ1 for human osteosarcoma (OS) treatment. JQ1 significantly inhibited the proliferation and survival of OS cells inducing G1 cell cycle arrest, premature senescence, but little effect on apoptosis. Interestingly, c-MYC protein levels in JQ1-treated cells remained unchanged, whereas the upregulation of p21 protein was still observable. Although effective in vitro, JQ1 alone failed to reduce the size of the MNNG/HOS xenografts in immunocompromised mice. To overcome the resistance of OS cells to JQ1 treatment, we combined JQ1 with rapamycin, an mTOR inhibitor. JQ1 and rapamycin synergistically inhibited the growth and survival of OS cells in vitro and in vivo. We also identified that RUNX2 is a direct target of BRD4 inhibition by JQ1 in OS cells. Chromatin immunoprecipitation (ChIP) showed that enrichment of BRD4 protein around RUNX2 transcription start sites diminished with JQ1 treatment in MNNG/HOS cells. Overexpression of RUNX2 protected JQ1-sensitive OS cells from the effect of JQ1, and siRNA-mediated inhibition of RUNX2 sensitized the same cells to JQ1. In conclusion, our findings suggest that JQ1, in combination with rapamycin, is an effective chemotherapeutic option for OS treatment. We also show that inhibition of RUNX2 expression by JQ1 partly explains antiproliferative activity of JQ1 in OS cells.
Project description:RNA-seq analysis of Huh7 cells after MAT2A inhibitor (FIDAS-5) or BET bromodomain inhibitor (JQ1) treatment. The analysis revealed that inhibition of MAT2A or BET factors suppresses the expression of genes regulating cell cycle progression and additional cellular programs.
Project description:JQ1 is a BET-bromodomain inhibitor that has immunomodulatory effects. However, the precise molecular mechanism that JQ1 targets to elicit changes in antibody production is not understood. Our results show that JQ1 induces apoptosis, reduces cell proliferation, and as a consequence, inhibits antibody secreting cell differentiation. ChIP-sequencing reveals a selective displacement of Brd4 in response to acute JQ1 treatment (<2 hours), resulting in specific transcriptional repression. After 8 hours, subsequent alterations in gene expression arose as a result of global loss of Brd4 occupancy. We demonstrate that apoptosis induced by JQ1 was solely attributed to the pro-apoptotic protein Bim (Bcl2l11). Conversely, cell cycle regulation by JQ1 was associated with multiple Myc-associated gene targets. Our results demonstrate that JQ1 drives temporal changes in Brd4 displacement that results in a specific transcriptional profile that directly affects B cell survival and proliferation to modulate the humoral immune response.
Project description:Ewing sarcomas (ES) are highly malignant, osteolytic bone or soft tissue tumors, which are characterized by early metastasis into lung and bone. Genetically, ES are defined by balanced chromosomal EWS/ETS translocations, which give rise to chimeric proteins (EWS-ETS) that generate an oncogenic transcriptional program associated with altered epigenetic marks throughout the genome. By use of an inhibitor (JQ1) blocking BET bromodomain binding proteins (BRDs) we strikingly observed a strong down-regulation of the predominant EWS-ETS protein EWS/FLI1 in a dose dependent manner. Microarray analysis further revealed JQ1 treatment to block a typical ES associated expression program. The effect on this expression program could be mimicked by RNA interference with BRD3 or BRD4 expression, indicating that the EWS/FLI1 mediated expression profile is at least in part mediated via such epigenetic readers. Consequently, contact dependent and independent proliferation of different ES lines was strongly inhibited. Mechanistically, treatment of ES resulted in a partial arrest of the cell cycle as well as induction of apoptosis. Tumor development was suppressed dose dependently in a xeno-transplant model in immune deficient mice, overall indicating that ES may be susceptible to treatment with epigenetic inhibitors blocking BET bromodomain activity and the associated pathognomonic EWS-ETS transcriptional program in ES. Ewing sarcoma cell lines A673 and TC-71 were treated for 48 hours with 2 microM JQ1 or DMSO control.
Project description:Small molecule BET bromodomain inhibitors (BETi) are actively being pursued in clinical trials for the treatment of a variety of cancers, however, the mechanisms of resistance to targeted BET protein inhibitors remain poorly understood. Using a novel mass spectrometry approach that globally measures kinase signaling at the proteomic level, we evaluated the response of the kinome to targeted BET inhibitor treatment in a panel of BRD4-dependent ovarian carcinoma (OC) cell lines. Despite initial inhibitory effects of BETi, OC cells acquired resistance following sustained treatment with the BETi, JQ1. Through application of Multiplexed Inhibitor Beads (MIBs) and mass spectrometry, we demonstrate that BETi resistance is mediated by adaptive kinome reprogramming, where activation of compensatory pro-survival kinase networks overcomes BET protein inhibition. Furthermore, drug combinations blocking these kinases may prevent or delay the development of drug resistance and enhance the efficacy of BET inhibitor therapy. RNAseq was employed to identify changes in kinase RNA expression following short term (48h) or chronic (JQ1R) JQ1 treatment in three different ovarian cancer cell lines.
Project description:Triple negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. Here we report the preferential and high sensitivity of TNBCs to BET bromodomain inhibitors such as JQ1 manifested by cell cycle arrest in early G1, apoptosis, and induction of markers of luminal epithelial differentiation in vitro and in vivo. The sensitivity of TNBC and other tumor types to BET inhibition establishes a rationale for clinical investigation, and a motivation to understand mechanisms of resistance. After engendering acquired resistance to BET inhibition in previously sensitive TNBCs, we utilized integrative approaches to identify a unique mechanism of epigenomic resistance to this epigenetic therapy. Resistant cells remain dependent on BRD4, confirmed by RNA interference. However, TNBC cells adapt to BET bromodomain inhibition by re-recruitment of unmutated BRD4 to super-enhancers, now in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify hyper-phosphorylation of BRD4 and strong association with MED1. Together, these studies provide a rationale for BET inhibition in TNBC and argue for combination strategies to anticipate clinical drug resistance. ChIP-seq in parental and JQ1 resistant triple negative breast cancer (TNBC) in response to DMSO or JQ1 treatment