ABSTRACT: Microbial diversity in combined UAF-UBAF system with novel sludge and coal cinder ceramic media for treating tetracycline wastewater Raw sequence reads
Project description:Membrane bioreactor (MBR) systems are typically known different from conventional activated sludge (CAS) systems in operational parameters, while current knowledge of their microbial differentiations is barely sufficient. To this end, the current study was launched to address the differences of the overall functional genes of an oxidation ditch (OD) and an MBR running parallelly at full-scale using a functional gene array-GeoChip 4.2. Two full-scale wastewater treatment systems applying the processes of oxidation ditch (OD) and membrane bioreactor (MBR) were investigated. They treated identical wastewater at the same scale. 12 mixed-liquor suspended sludge (MLSS) samples collected daily on 12 consecutive days from each system were analyzed by GeoChip 4.2.
Project description:To understand microbial community functional structures of activated sludge in wastewater treatment plants (WWTPs) and the effects of environmental factors on their structure, 12 activated sludge samples were collected from four WWTPs in Beijing. GeoChip 4.2 was used to determine the microbial functional genes involved in a variety of biogeochemical processes. The results showed that, for each gene category, such as egl, amyA, nir, ppx, dsrA sox and benAB, there were a number of microorganisms shared by all 12 samples, suggestive of the presence of a core microbial community in the activated sludge of four WWTPs. Variance partitioning analyses (VPA) showed that a total of 53% of microbial community variation can be explained by wastewater characteristics (25%) and operational parameters (23%), respectively. This study provided an overall picture of microbial community functional structures of activated sludge in WWTPs and discerned the linkages between microbial communities and environmental variables in WWTPs. Four full-scale wastewater treatment systems located in Beijing were investigated. Triplicate samples were collected in each site.
Project description:Manufactured nanomaterials (MNMs) are increasingly incorporated into consumer products that are disposed into sewage. In wastewater treatment, MNMs adsorb to activated sludge biomass where they may impact biological wastewater treatment performance, including nutrient removal. Here, we studied MNM effects on bacterial polyhydroxyalkanoate (PHA), specifically polyhydroxybutyrate (PHB), biosynthesis because of its importance to enhanced biological phosphorus (P) removal (EBPR). Activated sludge was sampled from an anoxic selector of a municipal wastewater treatment plant (WWTP), and PHB-containing bacteria were concentrated by density gradient centrifugation. After starvation to decrease intracellular PHB stores, bacteria were nutritionally augmented to promote PHB biosynthesis while being exposed to either MNMs (TiO2 or Ag) or to Ag salts (each at a concentration of 5 mg L-1). Cellular PHB concentration and PhyloChip community composition were analyzed. The final bacterial community composition differed from activated sludge, demonstrating that laboratory enrichment was selective. Still, PHB was synthesized to near-activated sludge levels. Ag salts altered final bacterial communities, although MNMs did not. PHB biosynthesis was diminished with Ag (salt or MNMs), indicating the potential for Ag-MNMs to physiologically impact EBPR through the effects of dissolved Ag ions on PHB producers.
Project description:To understand microbial community functional structures of activated sludge in wastewater treatment plants (WWTPs) and the effects of environmental factors on their structure, 12 activated sludge samples were collected from four WWTPs in Beijing. GeoChip 4.2 was used to determine the microbial functional genes involved in a variety of biogeochemical processes. The results showed that, for each gene category, such as egl, amyA, nir, ppx, dsrA sox and benAB, there were a number of microorganisms shared by all 12 samples, suggestive of the presence of a core microbial community in the activated sludge of four WWTPs. Variance partitioning analyses (VPA) showed that a total of 53% of microbial community variation can be explained by wastewater characteristics (25%) and operational parameters (23%), respectively. This study provided an overall picture of microbial community functional structures of activated sludge in WWTPs and discerned the linkages between microbial communities and environmental variables in WWTPs.
Project description:Manufactured nanomaterials (MNMs) are increasingly incorporated into consumer products that are disposed into sewage. In wastewater treatment, MNMs adsorb to activated sludge biomass where they may impact biological wastewater treatment performance, including nutrient removal. Here, we studied MNM effects on bacterial polyhydroxyalkanoate (PHA), specifically polyhydroxybutyrate (PHB), biosynthesis because of its importance to enhanced biological phosphorus (P) removal (EBPR). Activated sludge was sampled from an anoxic selector of a municipal wastewater treatment plant (WWTP), and PHB-containing bacteria were concentrated by density gradient centrifugation. After starvation to decrease intracellular PHB stores, bacteria were nutritionally augmented to promote PHB biosynthesis while being exposed to either MNMs (TiO2 or Ag) or to Ag salts (each at a concentration of 5 mg L-1). Cellular PHB concentration and PhyloChip community composition were analyzed. The final bacterial community composition differed from activated sludge, demonstrating that laboratory enrichment was selective. Still, PHB was synthesized to near-activated sludge levels. Ag salts altered final bacterial communities, although MNMs did not. PHB biosynthesis was diminished with Ag (salt or MNMs), indicating the potential for Ag-MNMs to physiologically impact EBPR through the effects of dissolved Ag ions on PHB producers. 18 samples; Triplicate PHB-enriched bacterial communities recovered from activated sludge were exposed to nanoparticle (TiO2 or Ag) or AgNO3 (as a silver control) or were not exposed to an nanoparticles (control) to determine if the naoparticles affected PHB production.
Project description:The transcriptome analysis by the human DNA microarray was applied to evaluate the impacts of whole wastewater effluents from the membrane bioreactors (MBRs) and the activated sludge process (AS), on the biological processes of human hepatoma HepG2 cells. The three conventional bioassays (i.e., cytotoxicity tests and bioluminescence inhibition test) and chemical analysis of the domestic effluent standards were conducted in parallel since they are well-established methods with previous applications to wastewater. A significant variation of effluent quality was sdemonstrated among the tested effluents despite that all effluents met the 40 national effluent standards. The three conventional bioassays supported the result of the transcriptome analysis, indicating the comparable or even higher sensitivity of the new assay. The most superior effluent quality was found in the MBR operated at a relatively long sludge retention time (i.e., 40 days) and small membrane pore size (i.e., 0.03 M-NM-<m). In addition, functional analysis of the differentially expressed genes revealed that the effluents made various impacts on the cellular functions, suggesting the transcriptome analysis by DNA microarray as more comprehensive, rapid and sensitive tool to detect multiple impacts of the whole effluents. Moreover, the potential genetic markers were proposed to quantitatively evaluate the treatability of the wastewater effluents. In this study, we examined the gene expression alteration in human hepatoma cell line, HepG2 exposed to the raw wastewater, effluents from three types of membrane bioreactors (MBRs), and the activated sludge process. Wastewater DNA microarray with 8795 human genes. MQ water was used as control. For duplicate, two dishes were prepared for each sample and individually treated in parallel.
Project description:Microbiome of activated sludge treating the iodide ion-containing wastewater, and coculture of the dominant microbes in the activated sludge