Project description:Expression profiling of 7,530 Heterodera glycines probesets present on the Affymetrix Soybean Genome Array GeneChip throughout the life cycle of the nematode (egg, infective J2, parasitic J2, J3, J4, adult female).
Project description:Plant-parasitic cyst nematodes induce the formation of hypermetabolic feeding sites, termed syncytia, as their sole source of nutrients. The formation of the syncytium is orchestrated by the nematode in part by modulation of phytohormone responses, including cytokinin. In response to infection by the nematode H. schachtii, cytokinin signaling is transiently induced at the site of infection and in the developing syncytium. Arabidopsis lines with reduced cytokinin sensitivity show reduced susceptibility to nematode infection, indicating that cytokinin signaling is required for optimal nematode development. Furthermore, lines with increased cytokinin sensitivity also exhibit reduced nematode susceptibility. To ascertain why cytokinin hypersensitivity reduces nematode parasitism, we examined the transcriptomes in wild-type and a cytokinin-hypersensitive type-A arr Arabidopsis mutant in response to H. schachtii infection. Genes involved in the response to biotic stress and defense response were elevated in the type-A arr mutant in the absence of nematodes and were hyper-induced following H. schachtii infection, which suggests that the Arabidopsis type-A arr mutants impede nematode development because they are primed to respond to pathogen infection. These results suggest that cytokinin signaling is required for optimal H. schachtii parasitism of Arabidopsis, but that elevated cytokinin signaling triggers a heightened immune response to nematode infection.
Project description:The soybean cyst nematode (SCN), Heterodera glycines, causes economically significant damage to soybeans (Glycine max) in many parts of the world. The cysts of this nematode can remain quiescent in soils for many years as a reservoir of infection for future crops. To investigate bacterial communities associated with SCN cysts, cysts were obtained from eight SCN-infested farms in southern Ontario, Canada, and analyzed by culture-dependent and -independent means. Confocal laser scanning microscopy observations of cyst contents revealed a microbial flora located on the cyst exterior, within a polymer plug region and within the cyst. Microscopic counts using 5-(4,6-dichlorotriazine-2-yl)aminofluorescein staining and in situ hybridization (EUB 338) indicated that the cysts contained (2.6 +/- 0.5) x 10(5) bacteria (mean +/- standard deviation) with various cellular morphologies. Filamentous fungi were also observed. Live-dead staining indicated that the majority of cyst bacteria were viable. The probe Nile red also bound to the interior polymer, indicating that it is lipid rich in nature. Bacterial community profiles determined by denaturing gradient gel electrophoresis analysis were simple in composition. Bands shared by all eight samples included the actinobacterium genera Actinomadura and STREPTOMYCES: A collection of 290 bacteria were obtained by plating macerated surface-sterilized cysts onto nutrient broth yeast extract agar or on actinomycete medium. These were clustered into groups of siblings by repetitive extragenic palindromic PCR fingerprinting, and representative isolates were tentatively identified on the basis of 16S rRNA gene sequence. Thirty phylotypes were detected, with the collection dominated by Lysobacter and Variovorax spp. This study has revealed the cysts of this important plant pathogen to be rich in a variety of bacteria, some of which could presumably play a role in the ecology of SCN or have potential as biocontrol agents.
Project description:Heterodera glycines, the soybean cyst nematode (SCN), is a plant-parasitic nematode capable of manipulating host plant biochemistry and development. Many studies have suggested that the nematode has acquired genes from bacteria via horizontal gene transfer events (HGTs) that have the potential to enhance nematode parasitism. A recent allelic imbalance analysis identified two candidate virulence genes, which also appear to have entered the SCN genome through HGTs. One of the candidate genes, H. glycines biotin synthase (HgBioB), contained sequence polymorphisms between avirulent and virulent inbred SCN strains. To test the function of these HgBioB alleles, a complementation experiment using biotin synthase-deficient Escherichia coli was conducted. Here, we report that avirulent nematodes produce an active biotin synthase while virulent ones contain an inactive form of the enzyme. Moreover, sequencing analysis of HgBioB genes from SCN field populations indicates the presence of diverse mixture of HgBioB alleles with the virulent form being the most prevalent. We hypothesize that the mutations in the inactive HgBioB allele within the virulent SCN could result in a change in protein function that in some unknown way bolster its parasitic lifestyle.