Project description:Tfap2c is deleted in Tpbpa positive precursor cells forming the junctional zone of murine placenta. Deregulation in gene expression is analysed compared to the junctional zone in control placenta.
Project description:Placentation differs in the BN rat strain when compared to HSD and DSS rat strains. Intrauterine trophoblast invasion is shallow and the junctional zone is underdeveloped in the BN rat. These structural differences are striking but their quantification is not conducive to high throughput analyses. In the rat, the junctional zone can be readily dissected and is more homogenous than other components of the placentation site. HSD and BN rat gestation day 18.5 junctional zone gene expression profiles were determined using DNA microarray analysis to identity placenta-associate quantitate traits. Total RNAs from Junctional zone tissues of gestation day18.5 HSD and BN rat strains were subjected to microarray analyses. Three biological replicates of each strains were analyzed.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.
Project description:Placentation differs in the BN rat strain when compared to HSD and DSS rat strains. Intrauterine trophoblast invasion is shallow and the junctional zone is underdeveloped in the BN rat. These structural differences are striking but their quantification is not conducive to high throughput analyses. In the rat, the junctional zone can be readily dissected and is more homogenous than other components of the placentation site. HSD and BN rat gestation day 18.5 junctional zone gene expression profiles were determined using DNA microarray analysis to identity placenta-associate quantitate traits.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility. Gene expression was measured in whole testis from males aged 62-86 days. Samples include 190 first generation lab-bred male offspring of wild-caught mice from the Mus musculus musculus - M. m. domesticus hybrid zone.
Project description:AKT1 is a serine/threonine kinase implicated in fetal, placental, and postnatal growth. In this study, we investigated roles for AKT1 in placental development using a genome-edited/loss-of-function rat model. Both heterozygous and homozygous Akt1 mutant rats were viable and fertile. Disruption of AKT1 resulted in placental, fetal, and postnatal growth restriction. Akt1 null placentas showed deficits in both junctional zone and labyrinth zone size and their ability to adapt to a physiological stressor. Robust differences in the transcriptome of wild type versus Akt1 null junctional zones were identified. Among the differentially expressed junctional zone transcripts was forkhead box O4 (Foxo4), which encodes a transcription factor and known AKT substrate. FOXO4 expression was prominent in the junctional zone and invasive trophoblast cells of the rat placentation site and enhanced following rat TS cell differentiation. Foxo4 gene disruption using genome-editing resulted in placentomegaly, including an enlarged junctional zone. AKT1 and FOXO4 regulate the expression of many of the same transcripts expressed by trophoblast cells; however, in opposite directions. In summary, we have identified AKT1 and FOXO4 as part of a regulatory network controlling hemochorial placenta development.
Project description:AKT1 is a serine/threonine kinase implicated in fetal, placental, and postnatal growth. In this study, we investigated roles for AKT1 in placental development using a genome-edited/loss-of-function rat model. Both heterozygous and homozygous Akt1 mutant rats were viable and fertile. Disruption of AKT1 resulted in placental, fetal, and postnatal growth restriction. Akt1 null placentas showed deficits in both junctional zone and labyrinth zone size and their ability to adapt to a physiological stressor. Robust differences in the transcriptome of wild type versus Akt1 null junctional zones were identified. Among the differentially expressed junctional zone transcripts was forkhead box O4 (Foxo4), which encodes a transcription factor and known AKT substrate. FOXO4 expression was prominent in the junctional zone and invasive trophoblast cells of the rat placentation site and enhanced following rat TS cell differentiation. Foxo4 gene disruption using genome-editing resulted in placentomegaly, including an enlarged junctional zone. AKT1 and FOXO4 regulate the expression of many of the same transcripts expressed by trophoblast cells; however, in opposite directions. In summary, we have identified AKT1 and FOXO4 as part of a regulatory network controlling hemochorial placenta development.
Project description:Placenta junctional zone and brains dissected, kept in -80ºC, RNA extracted with RNAesasy kit kiagen, cDNA performed with normalized RNA levels. qPCR gene expression profiling
Project description:Microarray experiment to identify changes in gene expression in 18.5 day post coitum Tex19.1-/- mouse placenta. Tex19.1 is expressed in trophectoderm-derived cells in the placenta. Tex19.1-/- placentas are small and have defects in junctional zone and labyrinth layers of the placenta, Tex19.1-/- embryos exhibit intra-uterine growth retardation. Data provides insight into the changes in gene expression and cell composition in Tex19.1-/- placentas. Six E18.5 Tex19.1-/- placentas (KO: four XX, two XY), four E18.5 Tex19.1+/- littermate control placentas (HET: four XX), and two E18.5 Tex19.1+/+ littermate control placentas (WT: two XY) are included in the analysis.
Project description:The importance of unanchored Ub in innate immunity has been shown only for a limited number of unanchored Ub-interactors. We investigated what additional cellular factors interact with unanchored Ub and whether unanchored Ub plays a broader role in innate immunity. To identify unanchored Ub-interacting factors from murine lungs, we used His-tagged recombinant poly-Ub chains as bait. These chains were mixed with lung tissue lysates and protein complexes were isolated with Ni-NTA beads. Sample elutions were subjected to mass spectrometry (LC-MSMS) analysis.