Project description:The project is directed to the development of selective glucocorticoid receptor agonists for anticancer therapy. Glucocorticoids (GC) are widely used in treatment of many types of cancer due to its ability to induce apoptosis in malignant cells (in blood cancer therapy) and to prevent nausea and emesis (in the chemotherapy of solid tumors). However, severe dose-limiting side effects occur, including osteoporosis, muscle wasting, diabetes and other metabolic complications. Both beneficial and harmful effects of glucocorticoids are due to selective activation or repression of particular genes by glucocorticoid receptor (GR). GR regulates gene expression via transactivation that requires GR homodimer binding to gene promoters and transrepression mediated via negative interaction between GR and other transcription factors as well as binding with negative glucocorticoid response elements (nGRE) in genes. GR transactivation is linked to metabolic side effects, while GR transrepression underlies glucocorticoid therapeutic action. Novel selective GR agonist Compound A (CpdA) prevents GR dimerization and transactivation, specifically activates GR transrepression, and has fewer side effects compared to glucocorticoids. Here we compare the gene expression profiles in lymphoma cells treated with glucocorticoid Dexamethasone (Dex) or CpdA
Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Glucocorticoids are widely used to treat inflammatory disorders. Prolonged use results in side effects including osteoporosis, diabetes and obesity. The selective glucocorticoid receptor (GR) modulator Compound A (CpdA) exhibits an inflammation-suppressive effect, largely in absence of detrimental side effects. To understand the mechanistic differences between the classic glucocorticoid dexamethasone (DEX) and CpdA, we looked for proteins oppositely regulated using an unbiased proteomics approach. We found that the autophagy receptor p62 but not GR mediates the anti-inflammatory action of CpdA in macrophages. CpdA drives the upregulation of p62 by recruiting the NRF2 transcription factor to its promoter. Contrarily, the classic GR ligand dexamethasone recruits GR to p62 and other NRF2 controlled gene promoters, resulting in gene downregulation. Both DEX and CpdA are able to induce autophagy, albeit in a cell-type and time-dependent manner. Suppression of LPS-induced IL-6 and MCP1 genes in bone marrow-derived macrophages by CpdA is hampered upon p62 silencing, confirming that p62 is essential for the anti-inflammatory capacity of CpdA. Together, these results demonstrate how off-target mechanisms of selective GR ligands may establish a more efficient anti-inflammatory therapy
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:Glucocorticoids (GC) have been widely used as coadjuvants in the treatment of solid tumors, but GC treatment may be associated with poor pharmacotherapeutic response and/or prognosis. The genomic action of GC in these tumors is largely unknown. Here we find that dexamethasone (Dex, a synthetic GC) regulated genes in triple-negative breast cancer (TNBC) cells are associated with drug resistance. Importantly, these GC-regulated genes are aberrantly expressed in TNBC patients and associated with unfavorable clinical outcomes. Interestingly, in TNBC cells, Compound A (CpdA, a selective GR modulator) only regulates a small number of genes not involved in carcinogenesis and therapy resistance. Mechanistic studies using a ChIP-exo approach reveal that Dex- but not CpdA-liganded glucocorticoid receptor (GR) binds to a single glucocorticoid response element (GRE), which drives the expression of pro-tumorigenic genes. Our data suggest that development of safe coadjuvant therapy should consider the distinct genomic function between Dex- and CpdA-liganded GR. To study GR-regulated genes and define GRE in human genome, RNA-seq and GR ChIP-exo are performed in MDA-MB-231 cells before/after dex and CpdA stimulation. Each experiment includes two replicates.