Project description:The prevalence of immune-mediated diseases such as allergies and autoimmune diseases is on the rise in the developed world. Microbial exposure is known to modulate the risk for these diseases. In order to explore differences in the gene expression patterns induced in utero in infants born in contrasting standards of living and hygiene, we collected umbilical cord blood RNA samples from full-term newborn infants born with normal vaginal delivery in Finland (modern society), Estonia (rapidly developing society) and the Republic of Karelia, Russia (poor economical conditions). Transcriptomic profiles were analyzed using whole genome microarrays including gender, gestational age, birth month and HLA allele genotype as confounding variables in the analysis. The data revealed that the whole blood transcriptome of Finnish and Estonian neonates differ from their Karelian counterparts. Samples from Karelian infants had an increase in transcripts associated with LPS induction and bacterial sepsis observed in 1-year-old infants in earlier studies. The results suggest exposure to toll like receptor (TLR) ligands and a more matured immune response in infants born in Petrozavodsk compared to the Finnish and Estonian infants. These results further support the concept of a conspicuous plasticity in the developing immune system: the environmental factors that play a role in the susceptibility/protection towards immune-mediated diseases begin to shape the neonatal immunity already in utero and direct the maturation of both the adaptive and the innate immune responses in accordance with the surrounding microbial milieu. These 15 rehybridized samples were only utilized in the batch correction and excluded from any further analysis steps. Umbilical cord blood was drawn into Tempus Blood RNA tubes (Applied Biosystems) from children born at the maternity unit of Jorvi hospital (Espoo, Finland; n=4), maternity units of Tartu and PM-CM-5lva (Estonia; n=4), or two maternity departments in Petrozavodsk (capital of the Republic of Karelia, Russian Federation; n=7) according to the manufacturerM-BM-4s protocol and then stored in -70 M-BM-0C until analyzed.
Project description:The prevalence of immune-mediated diseases such as allergies and autoimmune diseases is on the rise in the developed world. Microbial exposure is known to modulate the risk for these diseases. In order to explore differences in the gene expression patterns induced in utero in infants born in contrasting standards of living and hygiene, we collected umbilical cord blood RNA samples from full-term newborn infants born with normal vaginal delivery in Finland (modern society), Estonia (rapidly developing society) and the Republic of Karelia, Russia (poor economical conditions). Transcriptomic profiles were analyzed using whole genome microarrays including gender, gestational age, birth month and HLA allele genotype as confounding variables in the analysis. The data revealed that the whole blood transcriptome of Finnish and Estonian neonates differ from their Karelian counterparts. Samples from Karelian infants had an increase in transcripts associated with LPS induction and bacterial sepsis observed in 1-year-old infants in earlier studies. The results suggest exposure to toll like receptor (TLR) ligands and a more matured immune response in infants born in Petrozavodsk compared to the Finnish and Estonian infants. These results further support the concept of a conspicuous plasticity in the developing immune system: the environmental factors that play a role in the susceptibility/protection towards immune-mediated diseases begin to shape the neonatal immunity already in utero and direct the maturation of both the adaptive and the innate immune responses in accordance with the surrounding microbial milieu. Umbilical cord blood was drawn into Tempus Blood RNA tubes (Applied Biosystems) from children born between January and May 2010 at the maternity unit of Jorvi hospital (Espoo, Finland; n=48), maternity units of Tartu and PM-CM-5lva (Estonia; n=25), or two maternity departments in Petrozavodsk (capital of the Republic of Karelia, Russian Federation; n=40) according to the manufacturerM-BM-4s protocol and then stored in M-bM-^HM-^R70 M-BM-0C until analyzed. All newborn infants were full-term (>36 gestational weeks) and born vaginally. 113 cord blood RNA samples were analyzed with Affymetrix U219 gene array. Gender, pregnancy week, month of birth and HLA risk class were included as confounding factors in the analysis model.
Project description:EMG produced TPA metagenomics assembly of the A longitudinal analysis of the developing gut microbiome in infants from Finland, Estonia, and Russian Karelia (human gut metagenome) data set.
Project description:The prevalence of immune-mediated diseases such as allergies and autoimmune diseases is on the rise in the developed world. Microbial exposure is known to modulate the risk for these diseases. In order to explore differences in the gene expression patterns induced in utero in infants born in contrasting standards of living and hygiene, we collected umbilical cord blood RNA samples from full-term newborn infants born with normal vaginal delivery in Finland (modern society), Estonia (rapidly developing society) and the Republic of Karelia, Russia (poor economical conditions). Transcriptomic profiles were analyzed using whole genome microarrays including gender, gestational age, birth month and HLA allele genotype as confounding variables in the analysis. The data revealed that the whole blood transcriptome of Finnish and Estonian neonates differ from their Karelian counterparts. Samples from Karelian infants had an increase in transcripts associated with LPS induction and bacterial sepsis observed in 1-year-old infants in earlier studies. The results suggest exposure to toll like receptor (TLR) ligands and a more matured immune response in infants born in Petrozavodsk compared to the Finnish and Estonian infants. These results further support the concept of a conspicuous plasticity in the developing immune system: the environmental factors that play a role in the susceptibility/protection towards immune-mediated diseases begin to shape the neonatal immunity already in utero and direct the maturation of both the adaptive and the innate immune responses in accordance with the surrounding microbial milieu.
Project description:The prevalence of immune-mediated diseases such as allergies and autoimmune diseases is on the rise in the developed world. Microbial exposure is known to modulate the risk for these diseases. In order to explore differences in the gene expression patterns induced in utero in infants born in contrasting standards of living and hygiene, we collected umbilical cord blood RNA samples from full-term newborn infants born with normal vaginal delivery in Finland (modern society), Estonia (rapidly developing society) and the Republic of Karelia, Russia (poor economical conditions). Transcriptomic profiles were analyzed using whole genome microarrays including gender, gestational age, birth month and HLA allele genotype as confounding variables in the analysis. The data revealed that the whole blood transcriptome of Finnish and Estonian neonates differ from their Karelian counterparts. Samples from Karelian infants had an increase in transcripts associated with LPS induction and bacterial sepsis observed in 1-year-old infants in earlier studies. The results suggest exposure to toll like receptor (TLR) ligands and a more matured immune response in infants born in Petrozavodsk compared to the Finnish and Estonian infants. These results further support the concept of a conspicuous plasticity in the developing immune system: the environmental factors that play a role in the susceptibility/protection towards immune-mediated diseases begin to shape the neonatal immunity already in utero and direct the maturation of both the adaptive and the innate immune responses in accordance with the surrounding microbial milieu.
Project description:On going efforts are directed at understanding the mutualism between the gut microbiota and the host in breast-fed versus formula-fed infants. Due to the lack of tissue biopsies, no investigators have performed a global transcriptional (gene expression) analysis of the developing human intestine in healthy infants. As a result, the crosstalk between the microbiome and the host transcriptome in the developing mucosal-commensal environment has not been determined. In this study, we examined the host intestinal mRNA gene expression and microbial DNA profiles in full term 3 month-old infants exclusively formula fed (FF) (n=6) or breast fed (BF) (n=6) from birth to 3 months. Host mRNA microarray measurements were performed using isolated intact sloughed epithelial cells in stool samples collected at 3 months. Microbial composition from the same stool samples was assessed by metagenomic pyrosequencing. Both the host mRNA expression and bacterial microbiome phylogenetic profiles provided strong feature sets that clearly classified the two groups of babies (FF and BF). To determine the relationship between host epithelial cell gene expression and the bacterial colony profiles, the host transcriptome and functionally profiled microbiome data were analyzed in a multivariate manner. From a functional perspective, analysis of the gut microbiota's metagenome revealed that characteristics associated with virulence differed between the FF and BF babies. Using canonical correlation analysis, evidence of multivariate structure relating eleven host immunity / mucosal defense-related genes and microbiome virulence characteristics was observed. These results, for the first time, provide insight into the integrated responses of the host and microbiome to dietary substrates in the early neonatal period. Our data suggest that systems biology and computational modeling approaches that integrate “-omic” information from the host and the microbiome can identify important mechanistic pathways of intestinal development affecting the gut microbiome in the first few months of life. KEYWORDS: infant, breast-feeding, infant formula, exfoliated cells, transcriptome, metagenome, multivariate analysis, canonical correlation analysis 12 samples, 2 groups
Project description:Opioid analgesics are frequently prescribed in the United States and worldwide. However, serious side effects such as addiction, immunosuppression and gastrointestinal symptoms limit long term use. In the current study using a chronic morphine-murine model a longitudinal approach was undertaken to investigate the role of morphine modulation of gut microbiome as a mechanism contributing to the negative consequences associated with opioids use. The results revealed a significant shift in the gut microbiome and metabolome within 24 hours following morphine treatment when compared to placebo. Morphine induced gut microbial dysbiosis exhibited distinct characteristic signatures profiles including significant increase in communities associated with pathogenic function, decrease in communities associated with stress tolerance. Collectively, these results reveal opioids-induced distinct alteration of gut microbiome, may contribute to opioids-induced pathogenesis. Therapeutics directed at these targets may prolong the efficacy long term opioid use with fewer side effects.
Project description:On going efforts are directed at understanding the mutualism between the gut microbiota and the host in breast-fed versus formula-fed infants. Due to the lack of tissue biopsies, no investigators have performed a global transcriptional (gene expression) analysis of the developing human intestine in healthy infants. As a result, the crosstalk between the microbiome and the host transcriptome in the developing mucosal-commensal environment has not been determined. In this study, we examined the host intestinal mRNA gene expression and microbial DNA profiles in full term 3 month-old infants exclusively formula fed (FF) (n=6) or breast fed (BF) (n=6) from birth to 3 months. Host mRNA microarray measurements were performed using isolated intact sloughed epithelial cells in stool samples collected at 3 months. Microbial composition from the same stool samples was assessed by metagenomic pyrosequencing. Both the host mRNA expression and bacterial microbiome phylogenetic profiles provided strong feature sets that clearly classified the two groups of babies (FF and BF). To determine the relationship between host epithelial cell gene expression and the bacterial colony profiles, the host transcriptome and functionally profiled microbiome data were analyzed in a multivariate manner. From a functional perspective, analysis of the gut microbiota's metagenome revealed that characteristics associated with virulence differed between the FF and BF babies. Using canonical correlation analysis, evidence of multivariate structure relating eleven host immunity / mucosal defense-related genes and microbiome virulence characteristics was observed. These results, for the first time, provide insight into the integrated responses of the host and microbiome to dietary substrates in the early neonatal period. Our data suggest that systems biology and computational modeling approaches that integrate “-omic” information from the host and the microbiome can identify important mechanistic pathways of intestinal development affecting the gut microbiome in the first few months of life. KEYWORDS: infant, breast-feeding, infant formula, exfoliated cells, transcriptome, metagenome, multivariate analysis, canonical correlation analysis