Project description:Shrub willow (Salix spp.), a short rotation woody biomass crop, has superior properties as a perennial energy crop for the Northeast and Midwest US. However, the insect pest potato leafhopper Empoasca fabae (Harris) (PLH) can cause serious damage and reduce yield of susceptible genotypes. Currently, the willow cultivars in use display varying levels of susceptibility under PLH infestation. However, genes and markers for resistance to PLH are not yet available for marker-assisted selection in breeding. In this study, transcriptome differences between a resistant genotype 94006 (S. purpurea) and a susceptible cultivar ‘Jorr’ (S. viminalis), and their hybrid progeny were determined. Over 600 million RNA-Seq reads were generated and mapped to the Salix purpurea reference transcriptome. Gene expression analyses revealed the unique defense mechanism in resistant genotype 94006 that involves PLH-induced secondary cell wall modification. In the susceptible genotypes, genes involved in programed cell death were highly expressed, explaining the necrosis symptoms after potato leafhopper feeding. Overall, the discovery of resistance genes and defense mechanisms provides new resources for shrub willow breeding and research in the future.
Project description:Salt responsive genes were identified in chinese willow (Salix matsudana) after the plants were treated with 100 mM NaCl. for 48 hours We used microarrays to identify genes responsible for combating salt stress. Those up-regulated during the NaCl treatment may protect the plants from damages caused by salt stress.
Project description:In order to screening the responsive miRNAs and target genes of willow under salt stress, the 30-day-old plants were exposed to the salt solution (100 mmol L-1 NaCl) for 0 h and 2 d. then RNA isolated from root and stem tissues for the same time point were mixed respectively in equal amounts for small RNA (sRNA) sequencing. sRNAs with 16–30 nt were separated from 1 µg total RNA by size fractionation. Subsequently, the selected sRNA fragments were ligated with specialized adaptors to the 5’ and 3’ ends (Illumina) using T4 RNA ligase. Then, the ligated RNAs were reverse transcribed and amplified for sequencing using Illumina Hiseq2500 (LC Sciences, Hangzhou, China). Salt stress-responsive miRNAs were identified by comparing the expression levels of miRNAs between the two libraries. Equal amounts of all 2 RNA samples were mixed together to construct one degradome library, and then sent to Hangzhou LC-Bio Co., Ltd (Hangzhou, China) for sequencing by Illumina Genome Analyzer GA-I (Illumina, San Diego, CA, USA).
Project description:Salt responsive genes were identified in chinese willow (Salix matsudana) after the plants were treated with 100 mM NaCl. for 48 hours We used microarrays to identify genes responsible for combating salt stress. Those up-regulated during the NaCl treatment may protect the plants from damages caused by salt stress. 2 month-old S. matsudana plants which were treated with 100 mM NaCl and control plants were used for RNA extraction and hybridization on Affymetrix microarrays. We sought to obtain salt responsive genes that protect the plants from stress injury.Those differentially expressed genes identified by the microarray would help to understand the mechanism of S. matsudana reacting to salt stress.