Project description:MicroRNA microarray profilling analysis was performed on exosomes derived from serum in patients with myeloma in two conditions of therapeutic efficacy, Bortezomib resistance and Bortezomib response. Bortezomib is approved and widely used treating myeloma. Two kinds of sample were analyzed. MicroRNA microarray profilling analysis (using miRCURY LNA microRNA Array, 7th generation REV - hsa, mmu & rno, mirBase release 18, ProductNumber=208520,208521,208522) was performed on exosomes derived from serum in patients with myeloma in two conditions of therapeutic efficacy, Bortezomib resistance and Bortezomib response.
Project description:MicroRNA microarray profilling analysis was performed on exosomes derived from serum in patients with myeloma in two conditions of therapeutic efficacy, Bortezomib resistance and Bortezomib response. Bortezomib is approved and widely used treating myeloma.
Project description:We report the microRNA expression in patients with multiple myeloma and healthy adults. RNA sequencing was performed for circulating exosomes obtained from the serum of 10 MM patients and 5 healthy individuals.
Project description:Genome-wide analysis of gene expression in response to bortezomib treatment(33 nM) in cell lines before and after selection for resistance. Multiple myeloma (MM) is a hematologic malignancy characterized by the proliferation of neoplastic plasma cells in the bone marrow. While the first-to-market proteasome inhibitor bortezomib/VELCADE has been successfully used to treat myeloma patients, drug resistance remains an emerging problem. In this study, we identify signatures of bortezomib sensitivity and resistance by gene expression profiling (GEP) using pairs of bortezomib-sensitive and -resistant cell lines created from the Bcl-XL/Myc double transgenic mouse model of MM. Finally, these data reveal complex heterogeneity within MM and suggest resistance to one drug class reprograms resistant clones to make them more sensitive to a distinct class of drugs. This study represents an important next step in translating pharmacogenomic profiling and may be useful for understanding personalized pharmacotherapy of MM patients. Transcript profiling timecourses after treatment with Bortezomib treatment (33nm) in Multiple Myeloma derived cell lines.
Project description:Genome-wide analysis of gene expression in response to bortezomib treatment (33 nM) in cell lines before and after selection for resistance. Multiple myeloma (MM) is a hematologic malignancy characterized by the proliferation of neoplastic plasma cells in the bone marrow. While the first-to-market proteasome inhibitor bortezomib/VELCADE has been successfully used to treat myeloma patients, drug resistance remains an emerging problem. In this study, we identify signatures of bortezomib sensitivity and resistance by gene expression profiling (GEP) using pairs of bortezomib-sensitive and -resistant cell lines created from the Bcl-XL/Myc double transgenic mouse model of MM. Finally, these data reveal complex heterogeneity within MM and suggest resistance to one drug class reprograms resistant clones to make them more sensitive to a distinct class of drugs. This study represents an important next step in translating pharmacogenomic profiling and may be useful for understanding personalized pharmacotherapy of MM patients. Transcript profiling timecourses after treatment with Bortezomib treatment (33nm) in Multiple Myeloma derived cell lines.
Project description:Gene expression profile (GEP) was analyzed from cultured bone marrow (BM) samples from patients with bortezomib responsive versus bortezomib resistant myeloma after 6-8 hours incubation in vitro with bortezomib 2 µg/ml or with PBS. Case D also had a fresh BM sample taken 75 minutes after IV injection of bortezomib. Comparative gene expression profiling of cultured bone marrow samples from from patients with bortezomib responsive versus bortezomib resistant myeloma after 6-8 hours incubation in vitro with bortezomib 2 µg/ml or with PBS.
Project description:Genome-wide analysis of gene expression in response to bortezomib treatment (33 nM) in cell lines before and after selection for resistance. Multiple myeloma (MM) is a hematologic malignancy characterized by the proliferation of neoplastic plasma cells in the bone marrow. While the first-to-market proteasome inhibitor bortezomib/VELCADE has been successfully used to treat myeloma patients, drug resistance remains an emerging problem. In this part of the study, we identify signatures of bortezomib sensitivity by gene expression profiling (GEP) using The human myeloma cell lines MM1.S and U266 (obtained from ATCC). Finally, these data reveal complex heterogeneity within MM and suggest resistance to one drug class reprograms resistant clones to make them more sensitive to a distinct class of drugs. This study represents an important next step in translating pharmacogenomic profiling and may be useful for understanding personalized pharmacotherapy of MM patients. Transcript profiling timecourses after treatment with Bortezomib treatment (33nm) in two myeloma cell lines.
Project description:Gene expression profile (GEP) was analyzed from cultured bone marrow (BM) samples from patients with bortezomib responsive versus bortezomib resistant myeloma after 6-8 hours incubation in vitro with bortezomib 2 µg/ml or with PBS. Case D also had a fresh BM sample taken 75 minutes after IV injection of bortezomib.
Project description:The combination of bortezomib and dexamethasone should become the reference induction treatment for multiple myeloma patients younger than 65 years. Pharmacogenomic profiles of genes involved in response to treatment may help to understand resistance. We performed gene expression profiling in 9 myeloma cell lines, incubated or not with bortezomib and dexamethasone for 6 hours. Supervised analysis identified significantly up regulated genes involved in stress responses. We focused on REDD1 a gene known to be rapidly induced by a wide variety of stress conditions and DNA damages. REDD1 expression was early and highly induced after bortezomib exposure. REDD1 induction was associated with the dephosphorylation of P70 S6 ribosomal kinase (P70S6K), a key substrate of mTOR. These effects were dependent upon cell line. REDD1 was overexpressed within two hours in bortezomib resistant cell lines in association with a cell size decrease. In sensitive cell lines, neither REDD1 induction nor morphological changes occurred. RNA interference mediated inhibition of REDD1 induction abrogates P70S6K dephosphorylation, early transitory cell size reduction and enhances sensitivity to bortezomib - dexamethasone. Our results suggest that mTOR regulation could be a resistance mechanism mediated by REDD1 expression in myeloma cells. Nine cell lines of multiple myeloma studied, incubated or not with bortezomib and dexamethasone, examined with spotted cDNA nylon membrane. Cell line and Code : JJN3 = Vel_1x; L363 = Vel_2x; LP1 = Vel_3x; MDN = Vel_4x; NCI = Vel_5x; RPMI = Vel_6x; SBN = Vel_7x; U266 = Vel_8x; XG1 = Vel_9x.
Project description:Genome-wide analysis of gene expression in response to bortezomib treatment(33 nM) in cell lines before and after selection for resistance. Multiple myeloma (MM) is a hematologic malignancy characterized by the proliferation of neoplastic plasma cells in the bone marrow. While the first-to-market proteasome inhibitor bortezomib/VELCADE has been successfully used to treat myeloma patients, drug resistance remains an emerging problem. In this study, we identify signatures of bortezomib sensitivity and resistance by gene expression profiling (GEP) using pairs of bortezomib-sensitive and -resistant cell lines created from the Bcl-XL/Myc double transgenic mouse model of MM. Finally, these data reveal complex heterogeneity within MM and suggest resistance to one drug class reprograms resistant clones to make them more sensitive to a distinct class of drugs. This study represents an important next step in translating pharmacogenomic profiling and may be useful for understanding personalized pharmacotherapy of MM patients.