Project description:Background: Methanol is present in most ecosystems and may also occur in industrial applications, e.g. as an impurity of carbon sources such as technical glycerol. Methanol often inhibits growth of bacteria, thus, methanol tolerance may limit fermentative production processes. Results: The methanol tolerance of the amino acid producing soil bacterium Corynebacterium glutamicum was improved by genetic adaption in the presence of methanol. The resulting strain Tol1 exhibited significantly increased growth rates in the presence of up to 1 M methanol. However, neither transcriptional changes nor increased enzyme activities of the linear methanol oxidation pathway were observed, which was in accordance with the finding that tolerance to the downstream metabolites formaldehyde and formate was not improved. Genome sequence analysis of strain Tol1 revealed two point mutations potentially relevant to enhanced methanol tolerance: one leading to the amino acid exchange A165T of O-acetylhomoserine sulfhydrolase MetY and the other leading to shortened CoA transferase Cat (Q342*). Introduction of either mutation into the genome of C. glutamicum wild type increased methanol tolerance and introduction of both mutations into C. glutamicum was sufficient to achieve methanol tolerance almost indistinguishable from that of strain Tol1. Conclusion: The methanol tolerance of C. glutamicum can be increased by two point mutations leading to amino acid exchange of O-acetylhomoserine sulfhydrolase MetY and shortened CoA transferase Cat. Introduction of these mutations into producer strains may be helpful when using carbon sources containing methanol as component or impurity.
Project description:Background: Methanol is present in most ecosystems and may also occur in industrial applications, e.g. as an impurity of carbon sources such as technical glycerol. Methanol often inhibits growth of bacteria, thus, methanol tolerance may limit fermentative production processes. Results: The methanol tolerance of the amino acid producing soil bacterium Corynebacterium glutamicum was improved by genetic adaption in the presence of methanol. The resulting strain Tol1 exhibited significantly increased growth rates in the presence of up to 1 M methanol. However, neither transcriptional changes nor increased enzyme activities of the linear methanol oxidation pathway were observed, which was in accordance with the finding that tolerance to the downstream metabolites formaldehyde and formate was not improved. Genome sequence analysis of strain Tol1 revealed two point mutations potentially relevant to enhanced methanol tolerance: one leading to the amino acid exchange A165T of O-acetylhomoserine sulfhydrolase MetY and the other leading to shortened CoA transferase Cat (Q342*). Introduction of either mutation into the genome of C. glutamicum wild type increased methanol tolerance and introduction of both mutations into C. glutamicum was sufficient to achieve methanol tolerance almost indistinguishable from that of strain Tol1. Conclusion: The methanol tolerance of C. glutamicum can be increased by two point mutations leading to amino acid exchange of O-acetylhomoserine sulfhydrolase MetY and shortened CoA transferase Cat. Introduction of these mutations into producer strains may be helpful when using carbon sources containing methanol as component or impurity. The gene expression was analyzed in the methanol tolerant strain Tol1 in comparison to the C. glutamicumWT. Direct comparison in LB complex medium and analysis of expression response to methanol addition in mCGXII minimal medium with 100 mM glucose.
Project description:Methanol is considered as an interesting carbon source in biobased microbial production processes. As Corynebacterium glutamicum is an important host in industrial biotechnology, in particular for amino acid production, we performed studies on the response of this organism to methanol. C. glutamicum wild type was able to convert 13C-labeled methanol to 13CO2. Analysis of global gene expression in the presence of methanol revealed several genes of ethanol catabolism to be up-regulated, indicating that some of the corresponding enzymes are involved in methanol oxidation. Indeed, a mutant lacking the alcohol dehydrogenase gene adhA showed a 62% reduced methanol consumption rate, indicating that AdhA is mainly responsible for methanol oxidation to formaldehyde. Further studies revealed that oxidation of formaldehyde to formate is catalyzed predominantly by two enzymes, the acetaldehyde dehydrogenase Ald and the mycothiol-dependent formaldehyde dehydrogenase AdhE. The deletion mutants aldadhE and aldmshC were severely impaired in their ability to oxidize formaldehyde, but residual methanol oxidation to CO2 was still possible. The oxidation of formate to CO2 is catalyzed by the formate dehydrogenase FdhF recently identified by us. Similar to ethanol, methanol catabolism is subject to carbon catabolite repression in the presence of glucose and is dependent on the transcriptional regulator RamA, which was previously shown to be essential for expression of adhA and ald. In conclusion, we were able to show that C. glutamicum possesses an endogeneous pathway for methanol oxidation to CO2 and to identify the enzymes and a transcriptional regulator involved in this pathway.
Project description:To identify genes which are differentially expressed in Corynebacterium glutamicum in the cg2699 deletion strain, we performed DNA microarray analyses of C. glutamicum Δcg2699 compared to the WT.
Project description:To identify genes which are differentially expressed in Corynebacterium glutamicum in the cg2460 deletion strain, we performed DNA microarray analyses of C. glutamicum Δcg2460 compared to the WT.
Project description:Methanol is considered as an interesting carbon source in biobased microbial production processes. As Corynebacterium glutamicum is an important host in industrial biotechnology, in particular for amino acid production, we performed studies on the response of this organism to methanol. C. glutamicum wild type was able to convert 13C-labeled methanol to 13CO2. Analysis of global gene expression in the presence of methanol revealed several genes of ethanol catabolism to be up-regulated, indicating that some of the corresponding enzymes are involved in methanol oxidation. Indeed, a mutant lacking the alcohol dehydrogenase gene adhA showed a 62% reduced methanol consumption rate, indicating that AdhA is mainly responsible for methanol oxidation to formaldehyde. Further studies revealed that oxidation of formaldehyde to formate is catalyzed predominantly by two enzymes, the acetaldehyde dehydrogenase Ald and the mycothiol-dependent formaldehyde dehydrogenase AdhE. The deletion mutants M-oM-^AM-^DaldM-oM-^AM-^DadhE and M-oM-^AM-^DaldM-oM-^AM-^DmshC were severely impaired in their ability to oxidize formaldehyde, but residual methanol oxidation to CO2 was still possible. The oxidation of formate to CO2 is catalyzed by the formate dehydrogenase FdhF recently identified by us. Similar to ethanol, methanol catabolism is subject to carbon catabolite repression in the presence of glucose and is dependent on the transcriptional regulator RamA, which was previously shown to be essential for expression of adhA and ald. In conclusion, we were able to show that C. glutamicum possesses an endogeneous pathway for methanol oxidation to CO2 and to identify the enzymes and a transcriptional regulator involved in this pathway. Whole-genome DNA microarray analyses were performed to monitor changes in the global gene expression of C. glutamicum wild type in response to the presence of methanol.
Project description:Metabolically engineered Corynebacterium glutamicum strains were constructed for the enhanced production of L-arginine, and their gene expression profiles were investigated Gene expression profiles of two C. glutamicum strains AR2 and AR6 were examined for the 3043 genes twice.
Project description:Metabolically engineered Corynebacterium glutamicum strains were constructed for the enhanced production of L-arginine, and their gene expression profiles were investigated
Project description:To identify genes which are differentially expressed in Corynebacterium glutamicum chassis C1 in comparison to the prophage free strain MB001, we performed DNA microarray analyses of C. glutamicum C1 against MB001. For this purpose RNA was isolated from cells cultivated in CGXII minimal medium with 2% glucose (w v-1) and harvested in the exponential growth phase at an OD600 of 5. Four biological replicates were performed.