Project description:H3K27me3 is a repressive chromatin mark of genes and is catalyzed by homologs of Enhancer of zeste [E(z)], a component of Polycomb-repressive complex 2 (PRC2), while DNA methylation that occurs in CG and non-CG (CHG and CHH, where H is A, C or T) contexts is a hallmark of transposon silencing in plants. However, relationship between H3K27me3 and DNA methylation in gene repression remains unclear. In addition, the mechanism of PRC2 recruitment to specific genes is not known in plants. Here, we show that SDG711, a rice E(z) homolog, is required to maintain H3K27me3 of many developmental genes after shoot meristem to leaf transition and that many H3K27me3-marked developmental genes are also methylated at non-CG sites in the body regions. SDG711-binding and SDG711-mediated ectopic H3K27me3 also target genes methylated at non-CG sites. Conversely, mutation of OsDRM2, a major rice CHH methyltransferase, resulted in loss of SDG711-binding and H3K27me3 from many genes and their de-repression. Furthermore, we show that SDG711 physically interacts with OsDRM2 and a putative CHG methylation-binding protein. These results together suggest that the repression of many developmental genes may involve both DRM2-mediated non-CG methylation and PRC2-mediated H3K27me3 and that the two marks are not generally mutually exclusive but may cooperate in repression of developmentally regulated genes in rice.
Project description:Phosphate starvation/sufficient rice seedling, root or shoot Pi-starvation or Pi-sufficient stresses responsible rice genes, including previously unannotated genes were identified by Illumina mRNA-seq technology. 53 million reads from Pi-starvation or Pi-sufficient root or shoot tissues were uniquely mapped to the rice genome, and these included 40574 RAP3 transcripts in root and 39748 RAP3 transcripts in shoot. We compared our mRNA-seq expression data with that from Rice 44K oligomicroarray, and about 95.5% (root) and 95.4% (shoot) transcripts supported by the array were confirmed expression both by the array and by mRNA-seq, Moreover, 11888 (root) and 11098 (shoot) RAP genes which were not supported by array, were evidenced expression with mRNA-seq. Furthermore, we discovered 8590 (root) and 8193 (shoot) previously unannotated transcripts upon Pi-starvation and/or Pi-sufficient.
Project description:Epigenetic reprogramming is required for proper regulation of gene expression in eukaryotic organisms. In Arabidopsis, active DNA demethylation is crucial for seed viability, pollen function, and successful reproduction. The DEMETER (DME) DNA glycosylase initiates localized DNA demethylation in vegetative and central cells, so-called companion cells that are adjacent to sperm and egg gametes, respectively. In rice, the central cell genome displays local DNA hypomethylation, suggesting that active DNA demethylation also occurs in rice, however, the enzyme responsible for this process is unknown. One candidate is the rice REPRESSOR OF SILENCING 1a (ROS1a) gene, which is related to DME and is essential for rice seed viability and pollen function. Here, we report genome-wide analyses of DNA methylation in wild-type and ros1a mutant sperm and vegetative cells. We find that the rice vegetative cell genome is locally hypomethylated compared to sperm by a process that requires ROS1a activity. We show that many ROS1a target sequences in the vegetative cell are hypomethylated in the rice central cell, suggesting that ROS1a also demethylates the central cell genome. Similar to Arabidopsis, we show that sperm non-CG methylation is indirectly promoted by DNA demethylation in the vegetative cell. These results reveal that DNA glycosylase-mediated DNA demethylation processes are conserved in Arabidopsis and rice, plant species that diverged 150 million years ago. Finally, although global non-CG methylation levels of sperm and egg differ, the maternal and paternal embryo genomes show similar non-CG methylation levels, suggesting that rice gamete genomes undergo dynamic DNA methylation reprogramming after cell fusion.