Project description:To optimize access to nitrogen under limiting conditions, root systems must continuously sense and respond to local or temporal fluctuations in nitrogen availability. In Arabidopsis thaliana and several other species, external N levels that induce only mild deficiency stimulate the emergence of lateral roots and especially the elongation of primary and lateral roots. However, the identity of the genes involved in this coordination remains still largely elusive. In order to identify novel genes and mechanisms underlying nitrogen-dependent root morphological changes, we investigated time-dependent changes in the root transcriptome of Arabidopsis thaliana plants grown under sufficient nitrogen or under conditions that induced mild nitrogen deficiency.
Project description:Living organisms have to cope with multiple and combined fluctuations in their environment. According to their sessile mode of life, plants are even more subjected to such fluctuations impacting their physiology and development. In particular, nutrient availability is known to tune plant development through modulating hormonal signaling, and conversely, hormonal signals are key to control nutrient related signaling pathways (Krouk et al., 2011a). However, very few is known about molecular mechanisms leading to plant adaptation to such combined signals. Here we deployed an unprecedented combinatorial treatment matrix to reveal plant adaptation in response to nitrate (NO3-), ammonium (NH4+), auxin (IAA), cytokinins (CK) and abscisic acid (ABA) and their exhaustive binary combinations. In order to study the effect of 5 signaling molecules we developed a matrix of treatment including NO3- (1mM or 0.5mM), NH4+ (1mM, or 0.5mM), indol-acetic-acid (IAA: 500 nM), Kinetin (CK: 500 nM), abscisic acid (ABA: 1µM). When present, the overall nitrogen treatment has been maintained to 1mM. As such, when NO3- and NH4+ are present in the same media their concentration was divided by 2. Proper mock controls include KCl, and DMSO. Plants are grown on NH4+-succinate for 12 to 14 days (first visible true leaves). Transferred 24 hours on a refreshed N-free media (reset the background that may be exhausted in several elements), and then transferred toward fresh media containing combinations of signals. Plant roots are harvested after 4 hours of treatment for gene expression analysis. Please note that the treatment details for each sample were provided in the sample 'characteristics' column in 'NO-NH-IA-CK-AB' format followed by the Presence/Absence code used for each hormone/nutrient.
Project description:Plants aquire nitrogen from the soil, most commonly in the form of either nitrate or ammonium. Unlike ammonium, nitrate must be reduced (with NADH and ferredoxin as electron donors) prior to assimilation. Thus, nitrate nutrition imposes a substantially greater energetic cost than ammonium nutrition. Our goal was to compare the transcriptomes of nitrate-supplied and ammonium-supplied plants, with a particular interest in characterizing the differences in redox metabolism elicited by different forms of inorganic nitrogen. We used microarrays to compare the short-term transcriptional response to either nitrogen supply or ammonium supply in Arabidopsis roots. Genes upregulated or downregulated by nitrate only, ammonium only, or both ammonium and nitrate were identified and analyzed.
Project description:In this study, we use a targeted metabolite quantification approach to demonstrate the difference in quantities of pathway intermediates between wild type Arabidopsis roots and gat1_2.1 mutants using glutamine as organic nitrogen treatment and KNO3 and Glu treatments as negative and positive controls, respectively.
Project description:Muraro2014 - Vascular patterning in Arabidopsis roots
Using a multicellular model, maintanence of vascular patterning in Arabidopsis roots has been studied. The model that is provided here is the single-cell version of the model. The two-cell and multicellular models described in the paper can be downloaded as python scripts (follow the curation tab to get these files).
This model is described in the article:
Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots.
Muraro D, Mellor N, Pound MP, Help H, Lucas M, Chopard J, Byrne HM, Godin C, Hodgman TC, King JR, Pridmore TP, Helariutta Y, Bennett MJ, Bishopp A.
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):857-62.
Abstract:
As multicellular organisms grow, positional information is continually needed to regulate the pattern in which cells are arranged. In the Arabidopsis root, most cell types are organized in a radially symmetric pattern; however, a symmetry-breaking event generates bisymmetric auxin and cytokinin signaling domains in the stele. Bidirectional cross-talk between the stele and the surrounding tissues involving a mobile transcription factor, SHORT ROOT (SHR), and mobile microRNA species also determines vascular pattern, but it is currently unclear how these signals integrate. We use a multicellular model to determine a minimal set of components necessary for maintaining a stable vascular pattern. Simulations perturbing the signaling network show that, in addition to the mutually inhibitory interaction between auxin and cytokinin, signaling through SHR, microRNA165/6, and PHABULOSA is required to maintain a stable bisymmetric pattern. We have verified this prediction by observing loss of bisymmetry in shr mutants. The model reveals the importance of several features of the network, namely the mutual degradation of microRNA165/6 and PHABULOSA and the existence of an additional negative regulator of cytokinin signaling. These components form a plausible mechanism capable of patterning vascular tissues in the absence of positional inputs provided by the transport of hormones from the shoot.
This model is hosted on BioModels Database
and identified
by: BIOMD0000000522
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource
for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to the public
domain worldwide. Please refer to CC0 Public Domain
Dedication
for more information.
Project description:The goal of this project is to compare the primary metabolite profile in different tissue types of the model plant Arabidopsis thaliana. Specifically, plants were grown hydroponically under the long-day (16hr light/day) condition at 21C. Tissue samples, including leaves, inflorescences, and roots were harvest 4 1/2 weeks post sowing. Untargeted primary metabolites profiling was carried out using GCTOF.