Project description:Juvenile myelomonocytic leukemia (JMML) is a very rare and aggressive stem cell disease that mainly occurs in young children. RAS activation constitutes the core component of oncogenic signaling. In addition, the leukemic blasts of a quarter of JMML patients present with monosomy 7 (-7), whereas more than half of the patients show enhanced age-adjusted fetal hemoglobin (HbF) levels. Hematopoietic stem cell transplantation is the current standard of care. This results in an event-free survival of 50 - 60%, indicating that novel molecular driven therapeutic options are urgently needed. Using gene expression profiling in an extensive series of 82 patient samples, we aimed at understanding the molecular biology behind JMML and identified a previously unrecognized molecular subgroup characterized by high LIN28B expression. Interestingly, LIN28B overexpression was significantly correlated with higher HbF levels whereas patients with -7 seldom showed enhanced LIN28B expression. In line with LIN28Bâ??s role as mediator of fetal hematopoiesis, this explains the biology behind the observation that patients with -7 are rarely diagnosed with high age-adjusted HbF levels. In addition, this new fetal-like JMML subgroup presented with reduced levels of most members of the let-7 microRNA family and showed characteristic overexpression of genes involved in fetal hematopoiesis and stem cell self-renewal. Finally, high LIN28B expression was associated with poor clinical outcome in our JMML patient series, but not independent from other prognostic factors such as age and age-adjusted HbF levels. In conclusion, we identified LIN28B as a crucial molecular player at the heart of a novel fetal-like subgroup in JMML. Gene expression was measured on Agilent in 44 JMML patients and 7 healthy donors in the discovery cohort. A validation cohort of 38 patients and 9 healthy donors was measured on Affymetrix. All patient data can be found in Supplementary Table S1.
Project description:Juvenile myelomonocytic leukemia (JMML) is a very rare and aggressive stem cell disease that mainly occurs in young children. RAS activation constitutes the core component of oncogenic signaling. In addition, the leukemic blasts of a quarter of JMML patients present with monosomy 7 (-7), whereas more than half of the patients show enhanced age-adjusted fetal hemoglobin (HbF) levels. Hematopoietic stem cell transplantation is the current standard of care. This results in an event-free survival of 50 - 60%, indicating that novel molecular driven therapeutic options are urgently needed. Using gene expression profiling in an extensive series of 82 patient samples, we aimed at understanding the molecular biology behind JMML and identified a previously unrecognized molecular subgroup characterized by high LIN28B expression. Interestingly, LIN28B overexpression was significantly correlated with higher HbF levels whereas patients with -7 seldom showed enhanced LIN28B expression. In line with LIN28Bâ??s role as mediator of fetal hematopoiesis, this explains the biology behind the observation that patients with -7 are rarely diagnosed with high age-adjusted HbF levels. In addition, this new fetal-like JMML subgroup presented with reduced levels of most members of the let-7 microRNA family and showed characteristic overexpression of genes involved in fetal hematopoiesis and stem cell self-renewal. Finally, high LIN28B expression was associated with poor clinical outcome in our JMML patient series, but not independent from other prognostic factors such as age and age-adjusted HbF levels. In conclusion, we identified LIN28B as a crucial molecular player at the heart of a novel fetal-like subgroup in JMML. Gene expression was measured on Affymetrix in 38 JMML patients and 9 healthy donors in a validation cohort.
Project description:JMML (Juvenile myelomonocytic leukaemia) is a leukaemia hat only develops in young children and is thought to have a prenatal initiation. To study the relationship between JMML and normal ontogeny we studied the transcriptome of HSPC (hematopoietic stem and progenitor cells) sorted from sporadic JMML patients, healthy prenatal samples and from healthy age matched donors. Bulk transcriptome of sorted HSPC reveals that some JMML samples cluster with prenatal samples whereas other from a distinct cluster apart from any healthy samples. Methylation profile on bulk mononucleated cell on theses JMML patients, 2 healthy postnatal and 2 healthy prenatal samples is also investigated. The results show a global hypermethylation in JMML samples compared to healthy samples and a specific JMML group with a hypermethylated profile compared to all JMML samples.
Project description:JMML (Juvenile myelomonocytic leukaemia) is a leukaemia that only develops in young children and is thought to have a prenatal initiation. To study the relationship between JMML and normal ontogeny we studied the transcriptome of HPC (hematopoietic progenitor cells) sorted from sporadic JMML patients, healthy prenatal samples and from healthy age matched donors. Bulk transcriptome of sorted HPC reveals that some JMML samples cluster with prenatal samples whereas other from a distinct cluster apart from any healthy samples.
Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.