Project description:We show that the non-specific lethal (NSL) complex in Drosophila binds to housekeeping genes. Individual ChIP-qPCR experiments of NSL target genes indicated a role of the NSL complex in RNA Polymerase II (Pol II) recruitment to promoters. Consequently, we obtained ChIP-Seq profiles of the Pol-II-subunit Rbp3 in S2 cells that were depleted of either NSL1 or NSL3. Rbp3-ChIP from S2 cells treated with siRNA targeted against GFP were used as a control. This experiment is related to experiment E-MTAB-214 and E-MTAB-1085.
Project description:Control of RNA transcription is critical for the development and homeostasis of all organisms, and can occur at multiple steps of the transcription cycle, including RNA polymerase II (Pol II) recruitment, initiation, promoter-proximal pausing, and elongation. That Pol II accumulates on many promoters in metazoans implies that steps other than Pol II recruitment are rate-limiting and regulated 1-6. By integrating genome-wide Pol II chromatin immunoprecipition (ChIP) and Global Run-On (GRO) genomic data sets from Drosophila cells, we examined critical features of Pol II near promoters. The accumulation of promoter-proximal polymerase is widespread, occurring on 70% of active genes; and unlike elongating Pol II within the body of genes, promoter Pol II are held paused by factors like NELF, unable to transcribe unless nuclei are treated with strong detergent. Notably, we find that the vast majority of promoter-proximal Pol II detected by ChIP are paused, thereby identifying the biochemical nature of this rate-limiting step in transcription. Finally, we demonstrate that Drosophila promoters do not have the upstream divergent Pol II that is seen so broadly and prominently on mammalian promoters. We postulate this is a consequence of Drosophila’s extensive use of directional core promoter sequence elements, which contrasts with mammals’ lack of directional elements and prevalence of CpG island core promoters. In support of this idea, we show that the fraction of mammalian promoters containing a TATA box core element is dramatically depleted of upstream divergent transcription.
Project description:Cytosine methylation in the genome of Drosophila melanogaster has been elusive and controversial: methylcytosine has been detected at very low levels in early embryos, but the genomic location and function of methylation has not been established. We have mapped cytosine methylation genomewide in Stage 5 Drosophila embryo DNA by combining immuno-enrichment for 5-methylcytosine, bisulfite conversion, and deep sequencing. Unlike methylation patterns observed in other eukaryotic species, methylation in Drosophila is punctate and highly strand-asymmetrical; we confirmed this by direct PCR amplification and sequencing of bisulfite-converted DNA. Despite the locally asymmetric nature of methylation, large-scale patterns of methylation are symmetric. Methylated regions make up ~1% of the genome, and within these regions methylation of individual cytosines averages 2-10%. Methylation is concentrated in specific 5-base sequence motifs that are CA- and CT-rich but depleted of guanine. It is depleted from promoters, coding sequences, and most retrotransposons, and enriched in introns and in certain simple sequence repeats containing the commonly methylated motifs. Comparison with available gene expression data indicates that methylation in a gene is associated with lower expression; the X chromosome, which is subject to gene dosage compensation, is more densely methylated than the autosomes. This study firmly establishes the presence of cytosine methylation in Drosophila; the temporal overlap of methylation with the maternal-zygotic transition raises the possibility that methylation participates in the transition to zygotic gene expression. To enrich for rare cytosine methylation in Drosophila at embryonic Stage 5 (2-3 hours post-fertilization), we enriched sonicated Stage 5 genomic DNA for methylcytosine by immunoprecipitation with antibody to 5-methylcytosine. The immunoprecipitated DNA was then bisulfite converted and Illumina sequenced to obtain direct evidence for the presence of methylation. The presence and extent of DNA methylation was confirmed by Illumina sequencing of bisulfite-converted PCR amplicons.
Project description:Control of RNA transcription is critical for the development and homeostasis of all organisms, and can occur at multiple steps of the transcription cycle, including RNA polymerase II (Pol II) recruitment, initiation, promoter-proximal pausing, and elongation. That Pol II accumulates on many promoters in metazoans implies that steps other than Pol II recruitment are rate-limiting and regulated 1-6. By integrating genome-wide Pol II chromatin immunoprecipition (ChIP) and Global Run-On (GRO) genomic data sets from Drosophila cells, we examined critical features of Pol II near promoters. The accumulation of promoter-proximal polymerase is widespread, occurring on 70% of active genes; and unlike elongating Pol II within the body of genes, promoter Pol II are held paused by factors like NELF, unable to transcribe unless nuclei are treated with strong detergent. Notably, we find that the vast majority of promoter-proximal Pol II detected by ChIP are paused, thereby identifying the biochemical nature of this rate-limiting step in transcription. Finally, we demonstrate that Drosophila promoters do not have the upstream divergent Pol II that is seen so broadly and prominently on mammalian promoters. We postulate this is a consequence of Drosophila’s extensive use of directional core promoter sequence elements, which contrasts with mammals’ lack of directional elements and prevalence of CpG island core promoters. In support of this idea, we show that the fraction of mammalian promoters containing a TATA box core element is dramatically depleted of upstream divergent transcription. ChIP-seq data set for Pol II (rpb3) (2 replicates).