Project description:Normal differentiation and induced reprogramming require the activation of target cell programs and silencing of donor cell programs. In reprogramming, the same factors are often used to reprogram many different donor cell types. As most developmental repressors, such as RE1-silencing transcription factor (REST) and Groucho (also known as TLE), are considered lineage-specific repressors, it remains unclear how identical combinations of transcription factors can silence so many different donor programs. Distinct lineage repressors would have to be induced in different donor cell types. Here we found that the pan neuron-specific transcription factor Myt1-like (Myt1l) exerts its pro-neuronal function by direct repression of many different somatic lineage programs but not the neuronal program during reprogramming and neurogenesis and in primary mouse neurons. The repressive function of Myt1l is mediated by recruitment of a complex containing Sin3b by binding to a previously uncharacterized N-terminal domain. In agreement with its repressive function, the genomic binding sites of Myt1l are similar in neurons and fibroblasts and are preferentially in an open chromatin configuration. The Notch signalling pathway is repressed by Myt1l through silencing of several members, including Hes1. Acute knock-down of Myt1l in the developing mouse brain mimicked a Notch gain-of-function phenotype, suggesting that Myt1l allows newborn neurons to escape Notch activation during normal development. Depletion of Myt1l in primary postmitotic neurons de-repressed non-neuronal programs and impaired neuronal gene expression and function, indicating that many somatic lineage programs are actively and persistently repressed by Myt1l to maintain neuronal identity. It is now tempting to speculate that similar ‘many-but-one’ lineage repressors exist for other cell fates; such repressors, in combination with lineage-specific activators, would be prime candidates for use in reprogramming additional cell types.
Project description:In vitro studies indicate the neurodevelopmental disorder gene Myelin Transcription Factor 1 Like (MYT1L) suppresses non-neuronal lineage genes during fibroblast-to-neuron direct differentiation. However, MYT1L’s molecular and cellular functions during differentiation in the mammalian brain have not been fully characterized. Here, we found that MYT1L loss leads to up-regulated deep layer (DL) but down-regulated upper layer (UL) neuron gene expression, corresponding to an increased ratio of DL/UL neurons in mouse cortex. To define potential mechanisms, we conducted Cleavage Under Targets & Release Using Nuclease (CUT&RUN) to map MYT1L binding targets in mouse developing cortex and adult prefrontal cortex (PFC), and to map epigenetic changes due to MYT1L mutation. We found MYT1L mainly binds to open chromatin, but with different transcription factor co-occupancies between promoters and enhancers. Likewise, multi-omic dataset integration revealed that, at promoters, MYT1L loss does not change chromatin accessibility but does increase H3K4me3 and H3K27ac, activating both a subset of earlier neuronal development genes as well as BCL11B, a key regulator for DL neuron development. Meanwhile, we discovered that MYT1L normally represses the activity of neurogenic enhancers associated with neuronal migration and neuronal projection development by closing chromatin structures and promoting removal of active histone marks. Further, we show MYT1L interacts with SIN3B and HDAC2 in vivo, providing potential mechanisms underlying any repressive effects on histone acetylation and gene expression. Overall, our findings provide a comprehensive map of MYT1L binding in vivo and mechanistic insights to how MYT1L facilitates neuronal maturation.
Project description:Mutations that reduce the function of MYT1L, a neuron-specific transcription factor, are associated with a syndromic neurodevelopmental disorder. Furthermore, MYT1L is routinely used as a pro-neural factor in fibroblast-to-neuron transdifferentiation. MYT1L has been hypothesized to play a role in the trajectory of neuronal specification and subtype specific maturation, but this hypothesis has not been directly tested, nor is it clear which neuron types are most impacted by MYT1L loss. In this study, we profiled 412,132 nuclei from the forebrains of wild-type and MYT1L-deficient mice at three developmental stages: E14 at the peak of neurogenesis, P1 when neurons in the six cortical layers have been born, and P21 when neurogenesis is complete and neurons are maturing, to examine the role of MYT1L levels in the trajectory of neuronal development. We found that MYT1L deficiency significantly disrupted the relative proportions of cortical excitatory neurons. Changes in gene expression were concentrated in excitatory neurons, suggesting that transcriptional effects of MYT1L deficiency are largely due to disruption of neuronal maturation programs. Most effects on gene expression were cell autonomous and persistent through development. In addition, while MYT1L can both activate and repress gene expression, the repressive effects were most sensitive to haploinsufficiency, and thus more likely mediate MYT1L syndrome. These findings illuminate the intricate role of MYT1L in orchestrating gene expression dynamics during neuronal development, providing insights into the molecular underpinnings of MYT1L syndrome.
Project description:Mutations that reduce the function of MYT1L, a neuron-specific transcription factor, are associated with a syndromic neurodevelopmental disorder. Furthermore, MYT1L is routinely used as a pro-neural factor in fibroblast-to-neuron transdifferentiation. MYT1L has been hypothesized to play a role in the trajectory of neuronal specification and subtype specific maturation, but this hypothesis has not been directly tested, nor is it clear which neuron types are most impacted by MYT1L loss. In this study, we profiled 412,132 nuclei from the forebrains of wild-type and MYT1L-deficient mice at three developmental stages: E14 at the peak of neurogenesis, P1 when neurons in the six cortical layers have been born, and P21 when neurogenesis is complete and neurons are maturing, to examine the role of MYT1L levels in the trajectory of neuronal development. We found that MYT1L deficiency significantly disrupted the relative proportions of cortical excitatory neurons. Changes in gene expression were concentrated in excitatory neurons, suggesting that transcriptional effects of MYT1L deficiency are largely due to disruption of neuronal maturation programs. Most effects on gene expression were cell autonomous and persistent through development. In addition, while MYT1L can both activate and repress gene expression, the repressive effects were most sensitive to haploinsufficiency, and thus more likely mediate MYT1L syndrome. These findings illuminate the intricate role of MYT1L in orchestrating gene expression dynamics during neuronal development, providing insights into the molecular underpinnings of MYT1L syndrome.
Project description:Mutations that reduce the function of MYT1L, a neuron-specific transcription factor, are associated with a syndromic neurodevelopmental disorder. Furthermore, MYT1L is routinely used as a pro-neural factor in fibroblast-to-neuron transdifferentiation. MYT1L has been hypothesized to play a role in the trajectory of neuronal specification and subtype specific maturation, but this hypothesis has not been directly tested, nor is it clear which neuron types are most impacted by MYT1L loss. In this study, we profiled 412,132 nuclei from the forebrains of wild-type and MYT1L-deficient mice at three developmental stages: E14 at the peak of neurogenesis, P1 when neurons in the six cortical layers have been born, and P21 when neurogenesis is complete and neurons are maturing, to examine the role of MYT1L levels in the trajectory of neuronal development. We found that MYT1L deficiency significantly disrupted the relative proportions of cortical excitatory neurons. Changes in gene expression were concentrated in excitatory neurons, suggesting that transcriptional effects of MYT1L deficiency are largely due to disruption of neuronal maturation programs. Most effects on gene expression were cell autonomous and persistent through development. In addition, while MYT1L can both activate and repress gene expression, the repressive effects were most sensitive to haploinsufficiency, and thus more likely mediate MYT1L syndrome. These findings illuminate the intricate role of MYT1L in orchestrating gene expression dynamics during neuronal development, providing insights into the molecular underpinnings of MYT1L syndrome.
Project description:MYT1L is an autism spectrum disorder (ASD)-associated transcription factor that is expressed in virtually all neurons throughout life. How MYT1L mutations cause neurological phenotypes and whether they can be targeted remains enigmatic. Here, we examine the effects of MYT1L deficiency in human neurons and mice. Mutant mice exhibit neurodevelopmental delays with thinner cortices, behavioural phenotypes, and gene expression changes that resemble those of ASD patients. MYT1L target genes, including WNT and NOTCH, are activated upon MYT1L depletion and their chemical inhibition can rescue delayed neurogenesis in vitro. MYT1L deficiency also causes upregulation of the main cardiac sodium channel, SCN5A, and neuronal hyperactivity, which could be restored by shRNA-mediated knockdown of SCN5A or MYT1L overexpression in postmitotic neurons. Acute application of the sodium channel blocker, lamotrigine, also rescued electrophysiologic defects in vitro and behaviour phenotypes in vivo. Hence, MYT1L mutation causes both developmental and postmitotic neurological defects. However, acute intervention can normalise resulting electrophysiological and behavioural phenotypes in adulthood.
Project description:Cellular differentiation requires both activation of target cell programs and repression of non-target cell programs. Transcriptional repressors such as RE1-silencing transcription factor (REST) and Hairy/Enhancer of Split (Hes) repress neuronal genes in non-neuronal cells. However, it is unknown whether transcriptional repressors of non-neuronal genes in neuronal precursors are required to specify neuronal fate during development. The Myt1 family of zinc finger transcription factors contributes to fibroblast to neuron reprogramming in vitro by repressing Notch signaling. Here, we show that ztf-11 (Zinc-finger Transcription Factor-11), the sole Caenorhabditis elegans Myt1 homolog, is required for neurogenesis in multiple neuronal lineages, including an in vivo developmental epithelial-to-neuronal transdifferentiation event. ztf-11 is exclusively expressed in all neuronal precursors with remarkable specificity at single cell resolution. Loss of ztf-11 leads to upregulation of non-neuronal genes and reduced neurogenesis. Ectopic expression of ztf-11 in epidermal lineages is sufficient to produce additional neurons. Our genetic and genomic experiments show that ZTF-11 indeed functions as a transcriptional repressor to suppress the activation of non-neuronal genes in neurons; however, it does not function via repression of Notch signaling. Instead, ZTF-11 binds to the MuvBco-repressor complex, which we show is also required for neurogenesis. These results dovetail with ability of Myt1l (Myt1-like) to drive neuronal transdifferentiation in vitro in vertebrate systems. Together, we identified an evolutionarily conserved mechanism to specify neuronal cell fate by repressing non-neuronal genes.
Project description:Human genetics have defined a new autism-associated syndrome caused by loss-of-function mutations in MYT1L, a transcription factor known for enabling fibroblast-to-neuron conversions. However, how MYT1L mutation causes autism, ADHD, intellectual disability, obesity, and brain anomalies is unknown. Here, we develop a mouse model of this syndrome. Physically, Myt1l haploinsufficiency causes obesity, white-matter thinning, and microcephaly in the mice, mimicking clinical phenotypes. Studies during brain development reveal disrupted gene expression, mediated in part by loss of Myt1l gene target activation, and highlight precocious neuronal differentiation as the mechanism for microcephaly. In contrast, adult studies reveal that mutation results in failure of transcriptional and chromatin maturation, echoed in disruptions in baseline physiological properties of neurons. This results in behavioral features including hyperactivity, hypotonia, and social alterations, with more severe phenotypes in males. Overall, these studies provide insight into the mechanistic underpinnings of this disorder and enable future preclinical studies.
Project description:Human genetics have defined a new autism-associated syndrome caused by loss-of-function mutations in MYT1L, a transcription factor known for enabling fibroblast-to-neuron conversions. However, how MYT1L mutation causes autism, ADHD, intellectual disability, obesity, and brain anomalies is unknown. Here, we develop a mouse model of this syndrome. Physically, Myt1l haploinsufficiency causes obesity, white-matter thinning, and microcephaly in the mice, mimicking clinical phenotypes. Studies during brain development reveal disrupted gene expression, mediated in part by loss of Myt1l gene target activation, and highlight precocious neuronal differentiation as the mechanism for microcephaly. In contrast, adult studies reveal that mutation results in failure of transcriptional and chromatin maturation, echoed in disruptions in baseline physiological properties of neurons. This results in behavioral features including hyperactivity, hypotonia, and social alterations, with more severe phenotypes in males. Overall, these studies provide insight into the mechanistic underpinnings of this disorder and enable future preclinical studies.
Project description:The transcription factor NRSF/REST represses many vertebrate neuronal genes in non-neuronal cells by binding to 3 distinct motif classes, which are the canonical 21bp NRSEs, longer non-canonical sites and solo half-sites. We used ChIP-seq in four mammalian species to determine the evolution of the NRSF binding repertoire. We show that while some NRSEs are deeply conserved, genes with several NRSEs show evidence of compensatory site turnover, suggesting that the association of the transcription factor to its target gene is more important than the specific binding site. We also found that many newborn sites in human are associated with primate specific indels and transposable elements. Our analysis of sites with conserved ChIP-binding in all 4 species demonstrates that both the non-canonical and solo half-sites convert preferentially to canonical motifs. These findings support a model of dynamic conversion between different motif types that account for the preferential accumulation of the canonical NRSE during evolution.