Project description:The main aim of this experiment was to investigate gene expression on human subcutaneous adipose tissue following bariatric surgery. Our questions consisted in understanding how gene expression was linked to clinical parameters of obese patients and whether this drastic weight loss was discriminated this data.
Project description:Background. Differential gene expression in adipose tissue during diet-induced weight loss followed by a weight stability period is not well characterized. Markers of these processes may provide a deeper understanding of the underlying mechanisms. Objective. To identify differentially expressed genes in human adipose tissue during weight loss and weight maintenance after weight loss. Design. RNA from subcutaneous abdominal adipose tissue from nine obese subjects was obtained and analyzed at baseline, after weight reduction on a low calorie diet (LCD), and after a period of group therapy in order to maintain weight stability. Results. Subjects lost 18.8 + 5.4% of their body weight during the LCD and maintained this weight during group therapy. Insulin sensitivity (HOMA) improved after weight loss with no further improvement during weight maintenance. Cyclin-dependent kinase inhibitor 2B (CDKN2B) and JAZF zinc finger 1 (JAZF1), associated with type 2 diabetes, were downregulated. We could also confirm the downregulation of candidates for obesity and related traits, such as tenomodulin (TNMD) and matrix metallopeptidase 9 (MMP9), with weight loss. The expression of other candidates, such as cell death-inducing DFFA-like effector A (CIDEA) and stearoyl-CoA desaturase (SCD) were upregulated during weight loss but returned to baseline levels during weight maintenance. Conclusion. Genes in the adipose tissue are differentially expressed during weight loss and weight maintenance after weight loss. Genes that show sustained regulation may be of potential interest as markers of the beneficial effects of weight loss whereas others seem to be primarily involved in the process of weight loss itself. Nine participants were prescribed a low calorie diet (LCD) containing 1200 kcal/day for approximately three months (101 ± 26 days). Following the weight reduction phase the participants attended a six month follow-up period (167 ± 37 days). By protocol design, subjects were eligible to enter the study if they had lost at least 10% of their initial body weight during the LCD-period and maintained this weight (+5%) after group therapy. Subcutaneous adipose tissue samples were obtained at three time-points: (i) at baseline, (ii) after weight reduction when subjects were no longer losing weight, and (iii) after the group therapy weight maintenance phase.
Project description:Background. Differential gene expression in adipose tissue during diet-induced weight loss followed by a weight stability period is not well characterized. Markers of these processes may provide a deeper understanding of the underlying mechanisms. Objective. To identify differentially expressed genes in human adipose tissue during weight loss and weight maintenance after weight loss. Design. RNA from subcutaneous abdominal adipose tissue from nine obese subjects was obtained and analyzed at baseline, after weight reduction on a low calorie diet (LCD), and after a period of group therapy in order to maintain weight stability. Results. Subjects lost 18.8 + 5.4% of their body weight during the LCD and maintained this weight during group therapy. Insulin sensitivity (HOMA) improved after weight loss with no further improvement during weight maintenance. Cyclin-dependent kinase inhibitor 2B (CDKN2B) and JAZF zinc finger 1 (JAZF1), associated with type 2 diabetes, were downregulated. We could also confirm the downregulation of candidates for obesity and related traits, such as tenomodulin (TNMD) and matrix metallopeptidase 9 (MMP9), with weight loss. The expression of other candidates, such as cell death-inducing DFFA-like effector A (CIDEA) and stearoyl-CoA desaturase (SCD) were upregulated during weight loss but returned to baseline levels during weight maintenance. Conclusion. Genes in the adipose tissue are differentially expressed during weight loss and weight maintenance after weight loss. Genes that show sustained regulation may be of potential interest as markers of the beneficial effects of weight loss whereas others seem to be primarily involved in the process of weight loss itself.
Project description:Purpose: NGS was used to determine if a distinct transcriptomic profile is observed between lean, obese and weight loss fat Methods: We carried out RNA-Seq analysis of epididymal adipose mice ad libitum fed for 10 weeks either a high fat diet (HFD) or a regular chow diet (RD), versus a cohort of mice fed HFD for the first 5 weeks before swapping to RD for the remainder (SWAP). Results: SWAP feeding resulted in weight loss with a parallel improvement in insulin sensitivity. RNA-Seq revealed several transcriptomic signatures distinct to SWAP adipose, distinguished from both RD and HFD adipose. We found a unique up-regulated mRNA encoding a secreted, LPS-binding glycoprotein, CRISPLD2, in SWAP adipose tissue. While cellular CRISPLD2 protein levels were unchanged, plasma CRIPSLD2 levels increased in SWAP mice following weight loss, and can correlate with insulin sensitivity. Conclusions: Taken together, our data demonstrate that CRISPLD2 is a circulating adipokine that may regulate adipocyte remodeling during weight loss.
Project description:Analysis of ex vivo isolated lymphatic endothelial cells from the dermis of patients to define type 2 diabetes-induced changes. Results preveal aberrant dermal lymphangiogenesis and provide insight into its role in the pathogenesis of persistent skin inflammation in type 2 diabetes. The ex vivo dLEC transcriptome reveals a dramatic influence of the T2D environment on multiple molecular and cellular processes, mirroring the phenotypic changes seen in T2D affected skin. The positively and negatively correlated dLEC transcripts directly cohere to prolonged inflammatory periods and reduced infectious resistance of patients´ skin. Further, lymphatic vessels might be involved in tissue remodeling processes during T2D induced skin alterations associated with impaired wound healing and altered dermal architecture. Hence, dermal lymphatic vessels might be directly associated with T2D disease promotion.