Project description:Tomato (Solanum lycopersicum) is a major crop of high economic value. Phelipanche and Orobanche genera (broomrapes) are parasitic weeds, constituting biotic stressors that impact tomato production. Developing varieties with tolerance to broomrapes has become imperative for sustainable agriculture. Solanum pennellii, a wild tomato species, has been used as breeding material for S. lycopersicum. In the present study a commercial tomato hybrid and two Introgression Lines (ILs), (S. lycopersicum X S. pennellii), were employed to identify genes and metabolic pathways associated with resistance against broomrape. Comparative transcriptomic analysis revealed a multitude of differentially expressed genes (DEGs) in roots, especially in the resistant genotype IL6-3, several of which were validated by quantitative PCR. DEG and pathway enrichment analysis (PEA), revealed diverse molecular mechanisms that can potentially be implicated in the host’s defense response and the establishment of resistance. Further research into these genes and associated metabolic pathways will contribute to our understanding of host-parasite interactions and resistance to broomrapes. Findings will be valuable in molecular breeding for generating resistant genotypes, ultimately providing alternative solutions for weed management in tomato and other valuable crops.
Project description:To characterize the PTI response of tomato and the effect of the delivery of a subset of effectors, we performed an RNA-seq analysis of tomato Rio Grande prf3 leaves challenged with either the flgII-28 peptide or the following bacterial strains: Agrobacterium tumefaciens GV2260, Pseudomonas fluorescens 55, Pseudomonas putida KT2440, Pseudomonas syringae pv. tomato (Pst) DC3000, Pst DC3000 deltahrcQ-U deltafliC and Pst DC3000 deltaavrPto deltaavrPtoB. NOTE: Samples in SRA were assigned the same sample accession. This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:Post-translational modification of proteins through methylation plays important regulatory role in biological processes. Lysine methylation on histone proteins is known to play important role in chromatin structure and function. However, non-histone protein substrates of this modification remain largely unknown. Herein, we use high resolution mass spectrometry to global screening methylated substrates and lysine- methylation sites in tomato (Solanum Lycopersicum). A total of 241 sites of lysine methylation (mono-, di-, tri-methylation) in 176 proteins with diverse biological functions and subcellular localized were identified in mix tomato with different maturity. Two putative methylation motifs were detected. KEGG pathway category enrichment analysis indicated that methylated proteins are implicated in the regulation of diverse metabolic processes, including arbon fixation in photosynthetic organisms, pentose phosphate pathway, fructose and mannose metabolism, and cysteine and methionine metabolism. Three representative proteins were selected to analyze the effect of methylated modification on protein function. In addition, quantitative RT-PCR further validated the gene expression level of some key methylated proteins during fruit ripening, which are involved in oxidation reduction process, stimulus and stress, energy metabolism, signaling transduction, fruit ripening and senescence. These data represent the first report of methylation proteomic and supply abundant resources for exploring the functions of lysine methylation in tomato and other plants.
Project description:The tomato SlWRKY3 transcription factor was overexpressed in cultivated tomato (Solanum lycopersicum)and transgenic plants transcriptome was compared to that of wild-type plants.
Project description:After treatment with peptids, SA, JA and Et plants are primed due to the induction of plant immune system allowing to fight against plant pathogens. We used microarray analysis to study the expression pattern of the diferents genes involved in plant defense mechanisms related to biotic and abiotic stresses
Project description:In the present study, we demonstrated that application of CaCl2 to ‘Micro Tom’ tomato fruit (mature green stage) delayed fruit senescence and mature.