Project description:Priestia endophytica FH5, which was isolated from healthy tomato rhizosphere soil, had biological activity against a variety of plant diseases, including R. solani. We isolated the chemicals generated by strain FH5 to better understand the interaction between strain FH5 and R. solani. A transcriptome study of strain FH5 with and without R. solani exposure was also performed. In response to the fungal pathogen R. solani, strain FH5 changed genes linked to amino acid transport, carbohydrate transport, energy generation and conversion, and inorganic ion transport and metabolism, according to our findings.
Project description:Lytic bacteriophages able to infect and kill Dickeya spp. can be readily isolated from virtually all Dickeya spp.-containing environments, yet little is known about the selective pressure those viruses exert on their hosts. Here, we identified two spontaneous phage-resistant D. solani IPO 2222 mutants, DsR34 and DsR207, resistant to infection caused by phage vB_Dsol_D5 (ΦD5) that expressed a reduced ability to macerate potato tuber tissues compared to the wild-type, phage-susceptible D. solani IPO 2222 strain. Genome sequencing revealed that mutants had point mutations in two genes encoding: secretion protein HlyD (mutant DsR34) and elongation factor Tu (EF-Tu) (mutant DsR207). Both mutations impacted the proteoms of D. solani grown in rich and minimal media. Furthermore, DsR34 and DsR207 were characterized for features essential for their ecological success in a plant environment, including the ability to use various carbon and nitrogen sources, production of plant cell wall degrading enzymes, ability to form biofilms, siderophore production, swimming and swarming motility and virulence in planta. Compared to the wild-type ΦD5-susceptible D. solani strain, mutants DsR34 and DsR207 expressed reduced ability to macerate chicory leaves and to colonize and cause symptoms in growing potato plants. The implications of the ΦD5 resistance on the ecological performance of D. solani are discussed.
Project description:Paenibacillus polymyxa is a root-associated plant growth-promoting rhizobacterium. It was reported that many strains of P. polymyxa naturally exhibited the phenotypic variation. In the phase variation, the characteristics of the wild-type ‘B’ and the variant ‘F’ are very different in sporulation formation, motility, antibiotic ability and so on. For better understanding of the actual physiological changes, we performed RNA-seq analyses of P. polymyxa E681 to compare genome wide patterns of gene expression. As a result, we obtained 1,062 differentially expressed genes related to flagellar assembly and transport systems.
Project description:Rhizoctonia solani is a nectrotrophic fungal pathogen that causes billions of dollars of damage to agriculture worldwide and infects a broad host range including wheat, rice, potato and legumes. In this study we identify wheat genes that are differentially expressed in response to the R. solani isolate, AG8-1, using microarray technology. A significant number of wheat genes identified in this screen were involved in ROS production and redox regulation. Levels of ROS species were increased in wheat root tissue following R. solani infection as determined by NBT, DAB and titanium sulphate measurements/stainings. Pathogen/ROS related genes from R. solani were also tested for expression patterns upon wheat infection. TmpL, a R. solani gene homologous to a gene associated with ROS regulation in Alternaria brassicicola, and OAH, a R. solani gene homologous to oxaloacetate acetylhydrolase which has been shown to produce oxalic acid in Sclerotinia sclerotiorum, were highly induced in R.solani when infecting wheat. We speculate that the wheat germin-like protein (GLP) is induced to inactivate the oxalic acid that is produced by the R. solani OAH.
Project description:Rhizoctonia solani Kühn is a soilborne basidiomycetous fungus that causes significant damage to many economically important crops. R. solani isolates are classified into 13 Anastomosis Groups (AGs) with interspecific subgroups having distinctive morphology, pathogenicity and wide host range. However, the genetic factors that drive the unique fungal pathology are still not well characterized due to the limited number of available annotated genomes. Therefore, we performed genome sequencing, assembly, annotation and functional analysis of 13 R. solani isolates covering 7 AGs and selected subgroups (AG1-IA, AG1-IB, AG1-IC, AG2-2IIIB, AG3-PT, AG3-TB, AG4-HG-I, AG5, AG6, and AG8). Here, we report a pangenome comparative analysis of 13 R. solani isolates covering important groups to elucidate unique and common attributes associated with each isolate, including molecular factors potentially involved in determining AG-specific host preference. Finally, we present the largest repertoire of annotated R. solani genomes, compiled as a comprehensive and user-friendly database, viz. RsolaniDB. Since 7 genomes are reported for the first time, the database stands as a valuable platform for formulating new hypotheses by hosting annotated genomes, with tools for functional enrichment, orthologs and sequence analysis, currently not available with other accessible state-of-the-art platforms hosting Rhizoctonia genome sequences.
Project description:Paenibacillus polymyxa is an agriculturally important plant growth promoting rhizobacterium (PGPR). Many Paenibacillus species are known to be engaged in complex bacteria-bacteria and bacteria-host interactions, which in other bacteria were shown to necessitate quorum sensing communication, but to date no quorum sensing systems have been described in Paenibacillus. Here we show that the type strain P. polymyxa ATCC 842 encodes at least 16 peptide-based communication systems. Each of these systems comprises a pro-peptide that is secreted to the growth medium and further processed to generate a mature short peptide. Each peptide has a cognate intracellular receptor of the RRNPP family, and we show that external addition of P. polymyxa communication peptides to the medium leads to reprogramming of the transcriptional response. We found that these quorum sensing systems are conserved across hundreds of species belonging to the Paenibacillaceae family, with some species encoding more than 25 different peptide-receptor pairs, representing a record number of quorum sensing systems encoded in a single genome.