Project description:Membrane bioreactor (MBR) systems are typically known different from conventional activated sludge (CAS) systems in operational parameters, while current knowledge of their microbial differentiations is barely sufficient. To this end, the current study was launched to address the differences of the overall functional genes of an oxidation ditch (OD) and an MBR running parallelly at full-scale using a functional gene array-GeoChip 4.2. Two full-scale wastewater treatment systems applying the processes of oxidation ditch (OD) and membrane bioreactor (MBR) were investigated. They treated identical wastewater at the same scale. 12 mixed-liquor suspended sludge (MLSS) samples collected daily on 12 consecutive days from each system were analyzed by GeoChip 4.2.
Project description:Wastewater treatment plants use a variety of bioreactor types and configurations to remove organic matter and nutrients. Little is known regarding the effects of different configurations and within-plant immigration on microbial community dynamics. Previously, we found that the structure of ammonia-oxidizing bacterial (AOB) communities in a full-scale dispersed growth activated sludge bioreactor correlated strongly with levels of NO2- entering the reactor from an upstream trickling filter (Wells et al 2009). Here, to further examine this puzzling association, we profile within-plant microbial biogeography (spatial variation) and test the hypothesis that substantial microbial immigration occurs along a transect (raw influent, trickling filter biofilm, trickling filter effluent, and activated sludge) at the same full-scale wastewater treatment plant. AOB amoA gene abundance increased >30-fold between influent and trickling filter effluent concomitant with NO2- production, indicating unexpected growth and activity of AOB within the trickling filter. Nitrosomonas europaea was the dominant AOB phylotype in trickling filter biofilm and effluent, while a distinct ‘Nitrosomonas-like’ lineage dominated in activated sludge. Prior time series indicated that this ‘Nitrosomonas-like’ lineage was dominant when NO2- levels in the trickling filter effluent (i.e., activated sludge influent) were low, while N. europaea became dominant in the activated sludge when NO2- levels were high. This is consistent with the hypothesis that NO2- production may co-occur with biofilm sloughing, releasing N. europaea from the trickling filter into the activated sludge bioreactor. Phylogenetic microarray (PhyloChip) analyses revealed significant spatial variation in taxonomic diversity, including a large excess of methanogens in the trickling filter relative to activated sludge and attenuation of Enterobacteriaceae across the transect, and demonstrated transport of a highly diverse microbial community via the trickling filter effluent to the activated sludge bioreactor. Our results provide compelling evidence that substantial immigration between coupled process units occurs and may exert significant influence over microbial community dynamics within staged bioreactors.
Project description:There is a great need for setting novel measurable attributes at the cell physiological level in a scalable biopharmaceutical production process to be able to predict the process outcomes and improve process understanding. In a biologic production process, changes in culture environment due to several factors such as shear and bubble induced damage from gas sparging and agitation are known to occur. There is a gap in the knowledge of cellular response due to varying bioreactor environment itself during the course of cell culture, from lag-phase to log-phase to stationary-phase in culture. With the emergence of micro-arrays as tools for exploring cell physiological changes, it opens the possibility for studying the effect of bioreactor culture environment itself on the cell substrate. Such information could be eventually used to designate gene transcripts as biomarkers for cell status in a controlled bioreactor system. A model 5L bench-scale bubble aerated and impeller agitated bioreactor system was used to study gene expression profiles of a hybridoma cell line during the time-course of batch culture. Gene expression profiles that were variable from early-to-late in batch culture, as well as invariant gene profiles were summarized using microarray findings. Typical cellular functions studied were oxidative stress response, DNA damage response, apoptosis, antioxidant activity, cellular metabolism, and protein folding. These findings were also verified with a more rigorous semi-quantitative RT-PCR technique. The results of this study suggest that under predefined bioreactor culture conditions, significant gene changes from lag to log to stationary phase could be identified, which could then be used to track the culture state.
Project description:There is a great need for setting novel measurable attributes at the cell physiological level in a scalable biopharmaceutical production process to be able to predict the process outcomes and improve process understanding. In a biologic production process, changes in culture environment due to several factors such as shear and bubble induced damage from gas sparging and agitation are known to occur. There is a gap in the knowledge of cellular response due to varying bioreactor environment itself during the course of cell culture, from lag-phase to log-phase to stationary-phase in culture. With the emergence of micro-arrays as tools for exploring cell physiological changes, it opens the possibility for studying the effect of bioreactor culture environment itself on the cell substrate. Such information could be eventually used to designate gene transcripts as biomarkers for cell status in a controlled bioreactor system. A model 5L bench-scale bubble aerated and impeller agitated bioreactor system was used to study gene expression profiles of a hybridoma cell line during the time-course of batch culture. Gene expression profiles that were variable from early-to-late in batch culture, as well as invariant gene profiles were summarized using microarray findings. Typical cellular functions studied were oxidative stress response, DNA damage response, apoptosis, antioxidant activity, cellular metabolism, and protein folding. These findings were also verified with a more rigorous semi-quantitative RT-PCR technique. The results of this study suggest that under predefined bioreactor culture conditions, significant gene changes from lag to log to stationary phase could be identified, which could then be used to track the culture state. We ran consecutive 5L bioreactor runs, each with an independent vial thaw, to achieve multiple biological replicates per time-point. Bioreactors were sampled approximately every 12 hours for RNA extraction. For the 5L bioreactors, microarray samples were run for day 1 (n=2), day 2 (n=2), day 3 (n=3), and day 3.5 (n=3). Here 2 or 3 of the three biological replicates run for each time-point were included in the analysis, based on >70% genes found. We define early exponential as day 1, peak exponential as day 2 and day 3 and late stationary as day 3.5.
Project description:Background: Hematopoietic acute radiation syndrome (H-ARS) occurring after exposure to ionizing radiation damages bone marrow (BM) causing cytopenias, increasing susceptibility to infections and death. We and others have shown that cellular therapies like human mesenchymal stromal cells (MSCs), or monocytes/macrophages educated ex-vivo with extracellular vesicles (EVs) from MSCs were effective in a lethal H-ARS mouse model. However, given the complexity of generating cellular therapies and the potential risks of using allogeneic products, development of an “off-the-shelf” cell-free alternative like EVs may have utility in conditions like H-ARS that require rapid deployment of available therapeutics. The purpose of this study was to determine the feasibility of producing MSC-derived EVs at large scale using a bioreactor and assess critical quality control attributes like identity, sterility, and potency in educating monocytes and promoting survival in a lethal H-ARS mouse model. Methods: EVs were isolated by ultracentrifugation from unprimed and liposaccharide (LPS)-primed MSCs grown at large scale using a hollow fiber bioreactor and compared to a small scale system using flasks. The physical identity of EVs included a time course assessment of particle diameter, yield, protein content and surface marker profile by flow-cytometry. Comparison of the RNA cargo in EVs was determined by RNA-seq. Capacity of EVs to generate exosome educated monocytes (EEMos) was determined by qPCR and flow cytometry, and potency was assessed in vivo using a lethal ARS model with NSG mice. Results: Physical identity of EVs at both scales were similar but yields by volume were up to 38-fold more using a large-scale bioreactor system. RNA-seq indicated that flask EVs showed upregulated let-7 family and miR-143 micro-RNAs. EEMos educated with LPS-EVs at each scale were similar, showing increased gene expression of IL-6, IDO, FGF-2, IL-7, IL-10, and IL-15 and immunophenotyping consistent with a PD-L1 high, CD16 low, and CD86 low cell surface expression. Treatment with LPS-EVs manufactured at both scales were effective in the ARS model, improving survival and clinical scores through improved hematopoietic recovery. EVs from unprimed MSCs were less effective than LPS-EVs, with flask EVs providing some improved survival while bioreactor EVs provide no survival benefit. Conclusions: LPS-EVs as an effective treatment for H-ARS can be produced using a scale-up development manufacturing process, representing an attractive off-the-shelf, cell-free therapy.
Project description:Membrane bioreactor (MBR) systems are typically known different from conventional activated sludge (CAS) systems in operational parameters, while current knowledge of their microbial differentiations is barely sufficient. To this end, the current study was launched to address the differences of the overall functional genes of an oxidation ditch (OD) and an MBR running parallelly at full-scale using a functional gene array-GeoChip 4.2.
Project description:Microbial communities of sludge samples from lab-scale anammox bioreactor and full-scale swine wastewater treatment plant Raw sequence reads