Project description:Limited functional annotation of the Z. mobilis genome is a current barrier to both basic studies of Z. mobilis and its development as a synthetic-biology chassis. To gain insight, we collected sample-matched multiomics data including RNA-seq, transcription start site sequencing (TSS-seq), termination sequencing (term-seq), ribosome profiling, and label-free shotgun proteomic mass spectrometry across different growth conditions to improve annotation and assign functional sites in the Z. mobilis genome. Proteomics and ribosome profiling informed revisions of protein-coding genes, which included 44 start codon changes and 42 added proteins.
Project description:Investigation of whole-genome gene expression level changes in RDM-4 strain of Zymomonas mobilis respiration-deficient mutant compared to the wild-type strain. The mutant strains were isolated from the antibiotics-resistant mutants of Z. mobilis ZM6. The RDM strains exhibited much higher ethanol fermentation abilities than the wild-type strain under aerobic conditions. The strains also gained thermotolerance and exhibited higher ethanol productivities at high temperature (39 ºC) under both non-aerobic and aerobic conditions compared with the wild-type strain. To evaluate the mechanisms of aerobic fermentation and thermotolerance of the RDM strain, we performed the microarray experiments.