Project description:A critical transcription factor required for mammalian male sex determination is SRY (sex determining region on the Y chromosome). The expression of SRY in precursor Sertoli cells is one of the initial events in testis development. The current study was designed to determine the impact of environmentally induced epigenetic transgenerational inheritance on SRY during gonadal sex determination in the male. The agricultural fungicide vinclozolin and vehicle control (DMSO) exposed gestating females (F0 generation) during gonadal sex determination promoted the transgenerational inheritance of differential DNA methylation in sperm of the F3 generation (great grand-offspring). The fetal gonads in F3 generation males were used to identify potential alterations in SRY binding sites in the developing Sertoli cells. Chromatin immunoprecipitation with an SRY antibody followed by genome-wide promoter tiling array (ChIP-Chip) was used to identify alterations in SRY binding. A total of 81 adjacent oligonucleotide sites and 173 single oligo SRY binding sites were identified to be altered transgenerationally in the Sertoli cell vinclozolin lineage F3 generation males. Observations demonstrate the majority of the previously identified normal SRY binding sites were not altered and the altered SRY binding sites were novel and new additional sites. The chromosomal locations, gene associations and potentially modified cellular pathways were investigated. In summary, environmentally induces epigenetic transgenerational inheritance of germline epimutations appears to alter the cellular differentiation and development of the precursor Sertoli cell SRY binding during gonadal sex determination that influence the developmental origins of adult onset testis disease.
Project description:A critical transcription factor required for mammalian male sex determination is SRY (sex determining region on the Y chromosome). The expression of SRY in precursor Sertoli cells is one of the initial events in testis development. The current study was designed to determine the impact of environmentally induced epigenetic transgenerational inheritance on SRY during gonadal sex determination in the male. The agricultural fungicide vinclozolin and vehicle control (DMSO) exposed gestating females (F0 generation) during gonadal sex determination promoted the transgenerational inheritance of differential DNA methylation in sperm of the F3 generation (great grand-offspring). The fetal gonads in F3 generation males were used to identify potential alterations in SRY binding sites in the developing Sertoli cells. Chromatin immunoprecipitation with an SRY antibody followed by genome-wide promoter tiling array (ChIP-Chip) was used to identify alterations in SRY binding. A total of 81 adjacent oligonucleotide sites and 173 single oligo SRY binding sites were identified to be altered transgenerationally in the Sertoli cell vinclozolin lineage F3 generation males. Observations demonstrate the majority of the previously identified normal SRY binding sites were not altered and the altered SRY binding sites were novel and new additional sites. The chromosomal locations, gene associations and potentially modified cellular pathways were investigated. In summary, environmentally induces epigenetic transgenerational inheritance of germline epimutations appears to alter the cellular differentiation and development of the precursor Sertoli cell SRY binding during gonadal sex determination that influence the developmental origins of adult onset testis disease. The experimental design involved the intraperitoneal exposure of gestating female rats to vinclozolin or a vehicle control (dimethyl sulfoxide, DMSO) transiently from embryonic days E8-E14. Sister littermates were divided into control and vinclozolin treatment groups and mated to similar males to minimize the genetic variation between the control and vinclozolin lineages. Sufficient females were used so no inbreeding (sibling or cousin) occurred in any generation. The F1 generation was bred within the lineage to generate the F2 generation and these F2 generation bred to generate the F3 generation. The only exposure was the F0 generation female. The F3 generation control and vinclozolin lineage embryonic day 13 (E13) embryos were collected and the gonads micro-dissected and then sexed with an SRY PCR protocol. The male gonads were pooled from a minimum of three different litters and the pools used to collect DNA. Three different experiments were performed to collect 3 control and vinclozolin E13 F3 generation testis pools, each with different animals (n=25 gonads/pool). The chromatin DNA (not denatured) from each pool was fragmented and used in an SRY chromatin immunoprecipitation (ChIP) procedure for each pool separately. The control and vinclozolin SRY ChIP DNA were paired for a competitive hybridization on a genome-wide promoter tiling array (ChIP-Chip) assay. The hybridization data obtained was used to identify the SRY binding sites that were different in the F3 generation vinclozolin versus control lineage in E13 testis.
Project description:A number of environmental factors (e.g. toxicants) have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germline is associated with primordial germ cell development and during fetal gonadal sex determination. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation) progeny in regards to the primordial germ cell (PGC) epigenetic reprogramming of the F3 generation (i.e. great-grandchildren). The F3 generation primordial germ cell transcriptome and epigenome (DNA methylation) was altered transgenerationally. Interestingly, the differential DNA methylation regions (DMR) and altered transcriptomes were distinct between the onset of gonadal sex determination at embryonic day 13 (E13) and after cord formation in the testis at embryonic day 16 (E16). A larger number of DMR and transcriptional alterations were observed in the E13 PGC than E16 germ cells. Observations demonstrate an altered transgenerational epigenetic reprogramming and function of the primordial germ cells and subsequent male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided. The combined observations demonstrate ancestral exposure of a gestating female during fetal gonadal sex determination can promote transgenerational alterations in the primordial germ cell and subsequent male germline epigenetic and transcriptional programming. This altered germline programming leads to the epigenetic transgenerational inheritance of disease and phenotypic variation. Observations support the role of the primordial germ cell programming in the molecular mechanism involved and provides insights into the molecular mechanisms that control the epigenetic transgenerational inheritance phenomena. Results suggest a cascade of epigenetic and transcriptional events during germ cell development is needed to obtain the mature germline epigenome that is then transmitted transgenerationally. RNA samples from PGC of 2 F3-control lineage groups were compared to PGC of 2 F3-vinclozolin lineage groups for two embryonic age E13 and E16
Project description:Environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of adult onset disease, including testis disease and male infertility. The exposure of a gestating female during the period of gonadal sex determination has been shown to promote sperm epimutations, differential DNA methylation regions (DMR), that transmit transgenerational disease to subsequent generations. The current study was designed to determine the impact of an altered sperm epigenome on the subsequent development of an adult somatic cell (Sertoli cell) that influences the onset of a specific disease (male infertility). A gestating female rat (F0 generation) was exposed to the agriculture fungicide vinclozolin during gonadal sex determination and then the subsequent F3 generation progeny used for the isolation of Sertoli cells and assessment of testis disease. As previously observed, a spermatogenic cell apoptosis was observed. The Sertoli cells that provide the physical and nutritional support for the spermatogenic cells were isolated and alterations in gene expression examined. Over 400 genes were differentially expressed in the F3 generation control versus vinclozolin lineage Sertoli cells. A number of specific signaling pathways and cellular processes were identified to be transgenerationally altered. One of the key metabolic processes affected was pyruvate/lactate production that is directly linked to spermatogenic cell viability. The Sertoli cell epigenome was also altered with over 100 promoter differential DNA methylation regions (DMR) modified in the vinclozolin F3 generation Sertoli cell. The genomic features and overlap with the sperm DMR were investigated. Observations demonstrate that the transgenerational sperm epigenetic alterations subsequently alters the development of a specific somatic cell (Sertoli cell) epigenome and transcriptome that then has a role in the adult onset disease (male infertility). The environmentally induced epigenetic transgenerational inheritance of testis disease appears to be a component of the molecular etiology of male infertility. Environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of adult onset male infertility. The exposure of a gestating female during the period of gonadal sex determination has been shown to promote sperm epimutations, differential DNA methylation regions (DMR), that transmit transgenerational disease to subsequent generations. The current study was designed to determine the impact of an altered sperm epigenome on the subsequent development of an adult somatic cell (Sertoli cell) that influences the onset of a specific disease (male infertility). A gestating female rat (F0 generation) was exposed to the agriculture fungicide vinclozolin during gonadal sex determination and then the subsequent F3 generation progeny used for the isolation of Sertoli cells and assessment of testis disease. The Sertoli cells provide the physical and nutritional support for the spermatogenic cells in the testis. The F3 generation Sertoli cells have an altered transcriptome and epigenome associated with adult onset testis disease. The environmentally induced epigenetic transgenerational inheritance of Sertoli cell abnormalities appears to be a component of the molecular etiology of male infertility. RNA samples from Sertoli cell of 3 F3-control lineage groups are compared to Sertoli cell of 3 F3-vinclozolin lineage groups
Project description:A number of environmental factors (e.g. toxicants) have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germline is associated with primordial germ cell development and during fetal gonadal sex determination. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation) progeny in regards to the primordial germ cell (PGC) epigenetic reprogramming of the F3 generation (i.e. great-grandchildren). The F3 generation primordial germ cell transcriptome and epigenome (DNA methylation) was altered transgenerationally. Interestingly, the differential DNA methylation regions (DMR) and altered transcriptomes were distinct between the onset of gonadal sex determination at embryonic day 13 (E13) and after cord formation in the testis at embryonic day 16 (E16). A larger number of DMR and transcriptional alterations were observed in the E13 PGC than E16 germ cells. Observations demonstrate an altered transgenerational epigenetic reprogramming and function of the primordial germ cells and subsequent male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided. The combined observations demonstrate ancestral exposure of a gestating female during fetal gonadal sex determination can promote transgenerational alterations in the primordial germ cell and subsequent male germline epigenetic and transcriptional programming. This altered germline programming leads to the epigenetic transgenerational inheritance of disease and phenotypic variation. Observations support the role of the primordial germ cell programming in the molecular mechanism involved and provides insights into the molecular mechanisms that control the epigenetic transgenerational inheritance phenomena. Results suggest a cascade of epigenetic and transcriptional events during germ cell development is needed to obtain the mature germline epigenome that is then transmitted transgenerationally.
Project description:Environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of adult onset disease, including testis disease and male infertility. The exposure of a gestating female during the period of gonadal sex determination has been shown to promote sperm epimutations, differential DNA methylation regions (DMR), that transmit transgenerational disease to subsequent generations. The current study was designed to determine the impact of an altered sperm epigenome on the subsequent development of an adult somatic cell (Sertoli cell) that influences the onset of a specific disease (male infertility). A gestating female rat (F0 generation) was exposed to the agriculture fungicide vinclozolin during gonadal sex determination and then the subsequent F3 generation progeny used for the isolation of Sertoli cells and assessment of testis disease. As previously observed, a spermatogenic cell apoptosis was observed. The Sertoli cells that provide the physical and nutritional support for the spermatogenic cells were isolated and alterations in gene expression examined. Over 400 genes were differentially expressed in the F3 generation control versus vinclozolin lineage Sertoli cells. A number of specific signaling pathways and cellular processes were identified to be transgenerationally altered. One of the key metabolic processes affected was pyruvate/lactate production that is directly linked to spermatogenic cell viability. The Sertoli cell epigenome was also altered with over 100 promoter differential DNA methylation regions (DMR) modified in the vinclozolin F3 generation Sertoli cell. The genomic features and overlap with the sperm DMR were investigated. Observations demonstrate that the transgenerational sperm epigenetic alterations subsequently alters the development of a specific somatic cell (Sertoli cell) epigenome and transcriptome that then has a role in the adult onset disease (male infertility). The environmentally induced epigenetic transgenerational inheritance of testis disease appears to be a component of the molecular etiology of male infertility.
Project description:A number of environmental factors (e.g. toxicants) have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are those associated with primordial germ cell development and subsequent fetal germline development. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation) progeny in regards to the primordial germ cell (PGC) epigenetic reprogramming of the F3 generation (i.e. great-grandchildren). The F3 generation germline transcriptome and epigenome (DNA methylation) were altered transgenerationally. Interestingly, disruptions in DNA methylation patterns and altered transcriptomes were distinct between germ cells at the onset of gonadal sex determination at embryonic day 13 (E13) and after cord formation in the testis at embryonic day 16 (E16). A larger number of DNA methylation abnormalities (epimutations) and transcriptional alterations were observed in the E13 germ cells than in the E16 germ cells. These observations indicate that altered transgenerational epigenetic reprogramming and function of the male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided.
Project description:Environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of adult onset disease, including testis disease and male infertility. The current study was designed to determine the impact of an altered sperm epigenome on the subsequent development of an adult somatic cell (Sertoli cell) that influences the onset of a specific disease (male infertility). A gestating female rat (F0 generation) was exposed to the agriculture fungicide vinclozolin during gonadal sex determination and then the subsequent F3 generation progeny used for the isolation of Sertoli cells and assessment of testis disease. As previously observed, enhanced spermatogenic cell apoptosis was observed. The Sertoli cells provide the physical and nutritional support for the spermatogenic cells. Over 400 genes were differentially expressed in the F3 generation control versus vinclozolin lineage Sertoli cells. A number of specific cellular pathways were identified to be transgenerationally altered. One of the key metabolic processes affected was pyruvate/lactate production that is directly linked to spermatogenic cell viability. The Sertoli cell epigenome was also altered with over 100 promoter differential DNA methylation regions (DMR) modified. The genomic features and overlap with the sperm DMR were investigated. Observations demonstrate that the transgenerational sperm epigenetic alterations subsequently alters the development of a specific somatic cell (Sertoli cell) epigenome and transcriptome that correlates with adult onset disease (male infertility). The environmentally induced epigenetic transgenerational inheritance of testis disease appears to be a component of the molecular etiology of male infertility.