Project description:GM-CSF signaling was previously reported to have a negative effect on a murine model of (8;21)-induced leukemia. Gene expression profiling of MigR1 (Mig) control and RUNX1-ETO (RE), the oncofusion protein generated from t(8;21), murine Lin-/c-Kit+ hematopoietic stem/progenitor cells (HSPCs) was conducted to further elucidate the mechanisms mediating the negative effect induced by GM-CSF signaling in t(8;21) cells,
Project description:Although hematopoietic stem and progenitor cells (HSPCs) become activated in the cell-cycle status after chemotherapy to supply hematopoietic loss, the detailed mechanisms of activation remain unknown. Here we show that Sca1+ macrophages play a key role for bone marrow (BM) recovery through granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion. By analyzing gene expression profiles of HSPCs lodged in 5-fluolouracil (5-FU)-treated mice, we found GM-CSF as a key proliferative signal. Sca1+ macrophages in BM after 5-FU treatment expressed high levels of GM-CSF. GM-CSF-knockout mice treated with 5-FU were lethal because of severe BM suppression. Up-regulation of Csf2 in Sca1+ macrophages by 5-FU was suppressed in MyD88-knockout mice, suggesting that TLR signaling via damage-associated molecular patterns caused by cell death is critical for up-regulation of Csf2. In 5-FU treated BM, majority of Sca1+ macrophages and transplanted HSPCs locate perivascular areas. These findings together indicate that Sca1+ macrophages induce HSPCs to proliferate through GM-CSF signaling in the stressed BM environments.
Project description:Although hematopoietic stem and progenitor cells (HSPCs) become activated in the cell-cycle status after chemotherapy to supply hematopoietic loss, the detailed mechanisms of activation remain unknown. Here we show that Sca1+ macrophages play a key role for bone marrow (BM) recovery through granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion. By analyzing gene expression profiles of HSPCs lodged in 5-fluolouracil (5-FU)-treated mice, we found GM-CSF as a key proliferative signal. Sca1+ macrophages in BM after 5-FU treatment expressed high levels of GM-CSF. GM-CSF-knockout mice treated with 5-FU were lethal because of severe BM suppression. Up-regulation of Csf2 in Sca1+ macrophages by 5-FU was suppressed in MyD88-knockout mice, suggesting that TLR signaling via damage-associated molecular patterns caused by cell death is critical for up-regulation of Csf2. In 5-FU treated BM, majority of Sca1+ macrophages and transplanted HSPCs locate perivascular areas. These findings together indicate that Sca1+ macrophages induce HSPCs to proliferate through GM-CSF signaling in the stressed BM environments.
Project description:Compare the gene expression profile among human CD34+ cord blood cells infected with MIGR1, MIGR1-AML1-ETO or MIGR1-AML1-ETO∆NHR1 AML1-ETO promotes the self-renewal of human hematopoietic stem/progenitor cells (HSPCs). We found deletion of NHR1 domain abrogates AML1-ETO induced expasion of HSPCs. GFP+CD34+ human cord blood cells were sorted by FACS 72 hours after the infection for RNA extraction and hybridyzation for Affymetrix microarrays.
Project description:Compare the gene expression profile among human CD34+ cord blood cells infected with MIGR1, MIGR1-AML1-ETO or MIGR1-AML1-ETO∆NHR1 AML1-ETO promotes the self-renewal of human hematopoietic stem/progenitor cells (HSPCs). We found deletion of NHR1 domain abrogates AML1-ETO induced expasion of HSPCs.
Project description:The t(8;21) translocation fuses the DNA binding domain of the hematopoietic master regulator RUNX1 to the ETO protein. The resultant RUNX1/ETO fusion protein is a leukemia-initiating transcription factor that interferes with RUNX1 function. The result of this interference is a block in differentiation and, finally, the development of acute myeloid leukemia (AML). To obtain insights into RUNX1/ETO-dependant alterations of the epigenetic landscape we measured genome-wide RUNX1- and RUNX1/ETO bound regions in t(8;21) cells and assessed to what extent the effects of RUNX1/ETO on the epigenome depend on its continued expression in established leukemic cells. To this end we determined dynamic alterations of histone acetylation, RNA Polymerase II binding and RUNX1 occupancy in the presence or absence of RUNX1/ETO using a knockdown approach. Combined global assessments of chromatin accessibility and kinetic gene expression data show that RUNX1/ETO controls the expression of important regulators of hematopoietic differentiation and self-renewal. We show that selective removal of RUNX1/ETO leads to a widespread reversal of epigenetic reprogramming and a genome-wide re-distribution of RUNX1 binding, resulting in the inhibition of leukemic proliferation and self-renewal and the induction of differentiation. This demonstrates that RUNX1/ETO represents a pivotal therapeutic target in AML. Total RNA were obtained using 8 samples over four time courses (mismatch control and knock-down)
Project description:The t(8;21) translocation fuses the DNA binding domain of the hematopoietic master regulator RUNX1 to the ETO protein. The resultant RUNX1/ETO fusion protein is a leukemia-initiating transcription factor that interferes with RUNX1 function. The result of this interference is a block in differentiation and, finally, the development of acute myeloid leukemia (AML). To obtain insights into RUNX1/ETO-dependant alterations of the epigenetic landscape we measured genome-wide RUNX1- and RUNX1/ETO bound regions in t(8;21) cells and assessed to what extent the effects of RUNX1/ETO on the epigenome depend on its continued expression in established leukemic cells. To this end we determined dynamic alterations of histone acetylation, RNA Polymerase II binding and RUNX1 occupancy in the presence or absence of RUNX1/ETO using a knockdown approach. Combined global assessments of chromatin accessibility and kinetic gene expression data show that RUNX1/ETO controls the expression of important regulators of hematopoietic differentiation and self-renewal. We show that selective removal of RUNX1/ETO leads to a widespread reversal of epigenetic reprogramming and a genome-wide re-distribution of RUNX1 binding, resulting in the inhibition of leukemic proliferation and self-renewal and the induction of differentiation. This demonstrates that RUNX1/ETO represents a pivotal therapeutic target in AML. 14 samples include: RUNX1 Kasumi-1, RUNX1/ETO control, RUNX1/ETO siMM, RUNX1/ETO siRE, RUNX1_non-t(8;21), H3K9Ac_siMM, H3K9Ac_siRE, POLII_siMM and POLII_siRE ChIP-Seq samples, and Kasumi-1, non-t(8;21), t(8;21) paitent#1, t(8;21) paitent#2 and CD34 normal DNasel HS samples.
Project description:Classical dendritic cells (cDCs) are rare sentinel cells specialized in the regulation of adaptive immunity. Modelling cDC development is both crucial to study cDCs and harness their potential in immunotherapy. Here we present a novel in vitro cDC differentiation protocol using cord blood CD34+ hematopoietic stem and progenitor cells (HSPCs) co-cultured with bone marrow-derived murine mesenchymal cell line (MS5) engineered to co-express human FLT3L, SCF and CXCL12 (MS5_FS12) or MS5 engineered to express human GM-CSF (MS5_GM).
Project description:The t(8;21) translocation fuses the DNA binding domain of the hematopoietic master regulator RUNX1 to the ETO protein. The resultant RUNX1/ETO fusion protein is a leukemia-initiating transcription factor that interferes with RUNX1 function. The result of this interference is a block in differentiation and, finally, the development of acute myeloid leukemia (AML). To obtain insights into RUNX1/ETO-dependant alterations of the epigenetic landscape we measured genome-wide RUNX1- and RUNX1/ETO bound regions in t(8;21) cells and assessed to what extent the effects of RUNX1/ETO on the epigenome depend on its continued expression in established leukemic cells. To this end we determined dynamic alterations of histone acetylation, RNA Polymerase II binding and RUNX1 occupancy in the presence or absence of RUNX1/ETO using a knockdown approach. Combined global assessments of chromatin accessibility and kinetic gene expression data show that RUNX1/ETO controls the expression of important regulators of hematopoietic differentiation and self-renewal. We show that selective removal of RUNX1/ETO leads to a widespread reversal of epigenetic reprogramming and a genome-wide re-distribution of RUNX1 binding, resulting in the inhibition of leukemic proliferation and self-renewal and the induction of differentiation. This demonstrates that RUNX1/ETO represents a pivotal therapeutic target in AML. Total RNA were obtained using 8 samples over a time course of 10 days or using two samples two days after siRNA electroporation (mismatch control siRNA and RUNX1/ETO knock-down)
Project description:The t(8;21) translocation fuses the DNA binding domain of the hematopoietic master regulator RUNX1 to the ETO protein. The resultant RUNX1/ETO fusion protein is a leukemia-initiating transcription factor that interferes with RUNX1 function. The result of this interference is a block in differentiation and, finally, the development of acute myeloid leukemia (AML). To obtain insights into RUNX1/ETO-dependant alterations of the epigenetic landscape we measured genome-wide RUNX1- and RUNX1/ETO bound regions in t(8;21) cells and assessed to what extent the effects of RUNX1/ETO on the epigenome depend on its continued expression in established leukemic cells. To this end we determined dynamic alterations of histone acetylation, RNA Polymerase II binding and RUNX1 occupancy in the presence or absence of RUNX1/ETO using a knockdown approach. Combined global assessments of chromatin accessibility and kinetic gene expression data show that RUNX1/ETO controls the expression of important regulators of hematopoietic differentiation and self-renewal. We show that selective removal of RUNX1/ETO leads to a widespread reversal of epigenetic reprogramming and a genome-wide re-distribution of RUNX1 binding, resulting in the inhibition of leukemic proliferation and self-renewal and the induction of differentiation. This demonstrates that RUNX1/ETO represents a pivotal therapeutic target in AML.